Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 20(7): 5544-5552, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32484683

RESUMEN

The COVID-19 pandemic is currently causing a severe disruption and shortage in the global supply chain of necessary personal protective equipment (e.g., N95 respirators). The U.S. CDC has recommended use of household cloth by the general public to make cloth face coverings as a method of source control. We evaluated the filtration properties of natural and synthetic materials using a modified procedure for N95 respirator approval. Common fabrics of cotton, polyester, nylon, and silk had filtration efficiency of 5-25%, polypropylene spunbond had filtration efficiency 6-10%, and paper-based products had filtration efficiency of 10-20%. An advantage of polypropylene spunbond is that it can be simply triboelectrically charged to enhance the filtration efficiency (from 6 to >10%) without any increase in pressure (stable overnight and in humid environments). Using the filtration quality factor, fabric microstructure, and charging ability, we are able to provide an assessment of suggested fabric materials for homemade facial coverings.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/prevención & control , Máscaras , Pandemias/prevención & control , Neumonía Viral/prevención & control , Textiles , Aerosoles , Microbiología del Aire , COVID-19 , Infecciones por Coronavirus/transmisión , Electricidad , Diseño de Equipo , Filtración , Humanos , Máscaras/provisión & distribución , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología , Tamaño de la Partícula , Equipo de Protección Personal/provisión & distribución , Neumonía Viral/transmisión , SARS-CoV-2
2.
Phys Rev Lett ; 124(9): 096101, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202855

RESUMEN

Frustrated interactions can lead to short-range ordering arising from incompatible interactions of fundamental physical quantities with the underlying lattice. The simplest example is the triangular lattice of spins with antiferromagnetic interactions, where the nearest-neighbor spin-spin interactions cannot simultaneously be energy minimized. Here we show that engineering frustrated interactions is a possible route for controlling structural and electronic phenomena in semiconductor alloys. Using aberration-corrected scanning transmission electron microscopy in conjunction with density functional theory calculations, we demonstrate atomic ordering in a two-dimensional semiconductor alloy as a result of the competition between geometrical constraints and nearest-neighbor interactions. Statistical analyses uncover the presence of short-range ordering in the lattice. In addition, we show how the induced ordering can be used as another degree of freedom to considerably modify the band gap of monolayer semiconductor alloys.

3.
ACS Nano ; 15(11): 18297-18304, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34739204

RESUMEN

Metallic transition-metal dichalcogenides (TMDs) are rich material systems in which the interplay between strong electron-electron and electron-phonon interactions often results in a variety of collective electronic states, such as charge density waves (CDWs) and superconductivity. While most metallic group V TMDs exhibit coexisting superconducting and CDW phases, 2H-NbS2 stands out with no charge ordering. Further, due to strong interlayer interaction, the preparation of ultrathin samples of 2H-NbS2 has been challenging, limiting the exploration of presumably rich quantum phenomena in reduced dimensionality. Here, we demonstrate experimentally and theoretically that light substitutional doping of NbS2 with heavy atoms is an effective approach to modify both interlayer interaction and collective electronic states in NbS2. Very low concentrations of Re dopants (<1%) make NbS2 exfoliable (down to monolayer) while maintaining its 2H crystal structure and superconducting behavior. In addition, first-principles calculations suggest that Re dopants can stabilize some native CDW patterns that are not stable in pristine NbS2.

4.
ACS Nano ; 14(5): 6348-6356, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32368894

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has led to a major shortage of N95 respirators, which are essential for protecting healthcare professionals and the general public who may come into contact with the virus. Thus, it is essential to determine how we can reuse respirators and other personal protective equipment in these urgent times. We investigated multiple commonly used disinfection schemes on media with particle filtration efficiency of 95%. Heating was recently found to inactivate the virus in solution within 5 min at 70 °C and is among the most scalable, user-friendly methods for viral disinfection. We found that heat (≤85 °C) under various humidities (≤100% relative humidity, RH) was the most promising, nondestructive method for the preservation of filtration properties in meltblown fabrics as well as N95-grade respirators. At 85 °C, 30% RH, we were able to perform 50 cycles of heat treatment without significant changes in the filtration efficiency. At low humidity or dry conditions, temperatures up to 100 °C were not found to alter the filtration efficiency significantly within 20 cycles of treatment. Ultraviolet (UV) irradiation was a secondary choice, which was able to withstand 10 cycles of treatment and showed small degradation by 20 cycles. However, UV can potentially impact the material strength and subsequent sealing of respirators. Finally, treatments involving liquids and vapors require caution, as steam, alcohol, and household bleach all may lead to degradation of the filtration efficiency, leaving the user vulnerable to the viral aerosols.


Asunto(s)
Desinfección/métodos , Máscaras/normas , Dispositivos de Protección Respiratoria/normas , Desinfección/normas , Calefacción/métodos , Textiles/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA