Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(3): 2257-2266, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38195401

RESUMEN

Metallic Al has been deemed an ideal electrode material for aqueous batteries by virtue of its abundance and high theoretical capacity (8056 mAh cm-3). However, the development of aqueous Al metal batteries has been hindered by several side reactions, including water decomposition, Al corrosion, and passivation, which arise from the solvation reaction of Al and H2O in conventional aqueous electrolytes. In this work, we report that water activity in electrolyte can be suppressed by optimizing the Al3+ solvation structure through intercalation of polar pyridine-3-carboxylic acid in an aluminum trifluoromethanesulfonate aqueous environment. Furthermore, the pyridine-3-carboxylic acid molecules are inclined to alter the surface energy of Al, thus suppressing the random deposition of Al. As a result, the Al corrosion in the hybrid electrolyte is restrained, and the long-term electrochemical stability of the electrolyte is tremendously improved. These merits bring remarkable reversibility to aqueous Al batteries using Al-preintercalated MnO2 cathodes, delivering a retaining energy density of >250 Wh kg-1 at 0.2 A g-1 after 600 cycles.

2.
Small ; 20(27): e2311196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308074

RESUMEN

Tin sulfide (Sn2S3) has been recognized as a potential anode material for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to its high theoretical capacities. However, the sluggish ion diffusion kinetics, low conductivity, and severe volume changes during cycling have limited its practical application. In this study, Sn2S3 quantum dots (QDs) (≈1.6 nm) homogeneously embedded in an N, S co-doped carbon fiber network (Sn2S3-CFN) are successfully fabricated by sequential freeze-drying, carbonization, and sulfidation strategies. As anode materials, the Sn2S3-CFN delivers high reversible capacities and excellent rate capability (300.0 mAh g-1 at 10 A g-1 and 250.0 mAh g-1 at 20 A g-1 for SIBs; 165.3 mAh g-1 at 5 A g-1 and 100.0 mAh g-1 at 10 A g-1 for PIBs) and superior long-life cycling capability (279.6 mAh g-1 after 10 000 cycles at 5 A g-1 for SIBs; 166.3 mAh g-1 after 5 000 cycles at 2 A g-1 for PIBs). According to experimental analysis and theoretical calculations, the exceptional performance of the Sn2S3-CFN composite can be attributed to the synergistic effect of the conductive carbon fiber network and the Sn2S3 quantum dots, which contribute to the structural stability, reversible electrochemical reactions, and superior electron transportation and ions diffusion.

3.
Small ; : e2312190, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511576

RESUMEN

Iron sulfides have attracted tremendous research interest for the anode of sodium-ion batteries due to their high capacity and abundant resource. However, the intrinsic pulverization and aggregation of iron sulfide electrodes induced by the conversion reaction during cycling are considered destructive and undesirable, which often impedes their capacity, rate capability, and long-term cycling stability. Herein, an interesting pulverization phenomenon of ultrathin carbon-coated Fe1- xS nanoplates (Fe1- xS@C) is observed during the first discharge process of sodium-ion batteries, which leads to the formation of Fe1- xS nanoparticles with quantum size (≈5 nm) tightly embedded in the carbon matrix. Surprisingly, no discernible aggregation phenomenon can be detected in subsequent cycles. In/ex situ experiments and theoretical calculations demonstrate that ultrafine pulverization can confer several advantages, including sustaining reversible conversion reactions, reducing the adsorption energies, and diffusion energy barriers of sodium atoms, and preventing the aggregation of Fe1- xS particles by strengthening the adsorption between pulverized Fe1- xS nanoparticles and carbon. As a result, benefiting from the unique ultrafine pulverization, the Fe1- xS@C anode simultaneously exhibits high reversible capacity (610 mAh g-1 at 0.5 A g-1), superior rate capability (427.9 mAh g-1 at 20 A g-1), and ultralong cycling stability (377.9 mAh g-1 after 2500 cycles at 20 A g-1).

4.
Small ; : e2401645, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764309

RESUMEN

Anionic redox chemistry enables extraordinary capacity for Li- and Mn-rich layered oxides (LMROs) cathodes. Unfortunately, irreversible surface oxygen evolution evokes the pernicious phase transition, structural deterioration, and severe electrode-electrolyte interface side reaction with element dissolution, resulting in fast capacity and voltage fading of LMROs during cycling and hindering its commercialization. Herein, a redox couple strategy is proposed by utilizing copper phthalocyanine (CuPc) to address the irreversibility of anionic redox. The Cu-N synergistic effect of CuPc could not only inhibit surface oxygen evolution by reducing the peroxide ion O2 2- back to lattice oxygen O2-, but also enhance the reaction activity and reversibility of anionic redox in bulk to achieve a higher capacity and cycling stability. Moreover, the CuPc strategy suppresses the interface side reaction and induces the forming of a uniform and robust LiF-rich cathode electrolyte, interphase (CEI) to significantly eliminate transition metal dissolution. As a result, the CuPc-enhanced LMRO cathode shows superb cycling performance with a capacity retention of 95.0% after 500 long-term cycles. This study sheds light on the great effect of N-based redox couple to regulate anionic redox behavior and promote the development of high energy density and high stability LMROs cathode.

5.
Environ Toxicol ; 39(2): 643-656, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37565732

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a highly aggressive cancer with heavy mortality rates and poor prognosis. Cellular senescence exerts a pivotal influence on the development and progression of various cancers. However, the underlying effect of cellular senescence on the outcomes of patients with GBM remains to be elucidated. METHODS: Transcriptome RNA sequencing data with clinical information and single-cell sequencing data of GBM cases were obtained from CGGA, TCGA, and GEO (GSE84465) databases respectively. Single-sample gene set enrichment analysis (ssGSEA) analysis was utilized to calculate the cellular senescence score. WGCNA analysis was employed to ascertain the key gene modules and identify differentially expressed genes (DEGs) associated with the cellular senescence score in GBM. The prognostic senescence-related risk model was developed by least absolute shrinkage and selection operator (LASSO) regression analyses. The immune infiltration level was calculated by microenvironment cell populations counter (MCPcounter), ssGSEA, and xCell algorithms. Potential anti-cancer small molecular compounds of GBM were estimated by "oncoPredict" R package. RESULTS: A total of 150 DEGs were selected from the pink module through WGCNA analysis. The risk-scoring model was constructed based on 5 cell senescence-associated genes (CCDC151, DRC1, C2orf73, CCDC13, and WDR63). Patients in low-risk group had a better prognostic value compared to those in high-risk group. The nomogram exhibited excellent predictive performance in assessing the survival outcomes of patients with GBM. Top 30 potential anti-cancer small molecular compounds with higher drug sensitivity scores were predicted. CONCLUSION: Cellular senescence-related genes and clusters in GBM have the potential to provide valuable insights in prognosis and guide clinical decisions.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Análisis de Secuencia de ARN , Senescencia Celular/genética , Microambiente Tumoral
6.
J Cell Biochem ; 124(3): 421-433, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780445

RESUMEN

As one of the common and serious chronic complications of diabetes mellitus (DM), the related mechanism of diabetic retinopathy (DR) has not been fully understood. Müller cell reactive gliosis is one of the early pathophysiological features of DR. Therefore, exploring the manner to reduce diabetes-induced Müller cell damage is essential to delay DR. Thioredoxin 1 (Trx1), one of the ubiquitous redox enzymes, plays a vital role in redox homeostasis via protein-protein interactions, including apoptosis signal-regulating kinase 1 (ASK1). Previous studies have shown that upregulation of Trx by some drugs can attenuate endoplasmic reticulum stress (ERS) in DR, but the related mechanism was unclear. In this study, we used DM mouse and high glucose (HG)-cultured human Müller cells as models to clarify the effect of Trx1 on ERS and the underlying mechanism. The data showed that the diabetes-induced Müller cell damage was increased significantly. Moreover, the expression of ERS and reactive gliosis was also upregulated in diabetes in vivo and in vitro. However, it was reversed after Trx1 overexpression. Besides, ERS-related protein expression, reactive gliosis, and apoptosis were decreased after transfection with ASK1 small-interfering RNA in stable Trx1 overexpression Müller cells after HG treatment. Taken together, Trx1 could protect Müller cells from diabetes-induced damage, and the underlying mechanism was related to inhibited ERS via ASK1.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Ratones , Humanos , Animales , Células Ependimogliales/metabolismo , Gliosis , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/farmacología , Retinopatía Diabética/genética , Apoptosis , Inflamación , Estrés del Retículo Endoplásmico
7.
Small ; 19(18): e2207619, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36775918

RESUMEN

Al ion batteries (AIBs) are attracting considerable attention owing to high volumetric capacity, low cost, and high safety. However, the strong electrostatic interaction between Al3+ and host lattice leads to discontented cycling life and inferior rate capability. Herein, a new strategy of employing water molecules contained VOPO4 ·H2 O to boost Al3+ migration via the charge shielding effect of water is reported. It is revealed that VOPO4 ·H2 O with water lubrication effect and smaller steric hindrance owns high capacity and fast Al3+ diffusion, while the loss of unstable water upon cycling leads to a rapid performance degradation. To address this problem, ultrathin VOPO4 ·H2 O@MXene nanosheets are fabricated via the formed TiOV bond between VOPO4 ·H2 O and MXene. The MXene aided exfoliation results in enhanced VOwater bond strength between H2 O and VOPO4 that endows the obtained composite with strong water holding ability, contributing to the extraordinary cycling stability. Consequently, the VOPO4 ·H2 O@MXene delivers a high discharge potential of 1.8 V and maintains discharge capacities of 410 and 374.8 mAh g-1 after 420 and 2000 cycles at the current densities of 0.5 and 1.0 A g-1 , respectively. This work provides a new understanding of water-contained AIBs cathodes and vital guidance for developing high-performance AIBs.

8.
Small ; 19(38): e2302188, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37259260

RESUMEN

Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN3 )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN3 , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na+ transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g-1 after 5800 cycles at 2 A g-1 and 430.9 mAh g-1 after 7880 cycles at 10 A g-1 ), as well as excellent rate capability (422.3 mAh g-1 at 20 A g-1 ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.

9.
Small ; 19(26): e2207210, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36942849

RESUMEN

The low ionic and electronic conductivity between current solid electrolytes and high-capacity anodes limits the long-term cycling performance of all-solid-state lithium-ion batteries (ASSLIBs). Herein, this work reports the fabrication of an ultra-stable electrode-solid electrolyte composite for high-performance ASSLIBs enabled by the homogeneous coverage of ultrathin Mg(BH4 )2 layers on the surface of each MgH2 nanoparticle that are uniformly distributed on graphene. The initial discharge process of Mg(BH4 )2 layers results in uniform coverage of MgH2 nanoparticle with both LiBH4 as the solid electrolyte and Li2 B6 with even higher Li ion conductivity than LiBH4 . Consequently, the Li ion conductivity of graphene-supported MgH2 nanoparticles covered with ultrathin Mg(BH4 )2 layers is two orders of magnitude higher than that without Mg(BH4 )2 layers. Moreover, the thus-formed inactive Li2 B6 with strong adsorption capability toward LiBH4 , acts as a stabilizing framework, which, coupled with the structural support role of graphene, alleviates the volume change of MgH2 nanoparticles and facilitates the intimate contact between LiBH4 and individual MgH2 nanoparticles, leading to the formation of uniform stable interfaces with high ionic and electronic conductivity on each MgH2 nanoparticles. Hence, an ultrahigh specific capacity of 800 mAh g-1 is achieved for MgH2 at 2 A g-1 after 350 cycles.

10.
Small ; : e2308632, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044284

RESUMEN

Constructing robust anode with strong aluminophilicity and rapid desolvation kinetics is essential for achieving high utilization, long-term durability, and superior rate performance in Al metal-based energy storage, yet remains largely unexplored. Herein, molybdenum nanoparticles embedded onto nitrogen-doped graphene (Mo@NG) are designed and prepared as Al host to regulate the deposition behavior and achieve homogeneous Al plating/stripping. The monodispersed Mo nanoparticles reduce the desolvation energy barrier and promote the deposition kinetics of Al. Additionally, Mo nanoparticles act as aluminophilic nucleation sites to minimize the Al nucleation overpotential, further guiding uniform and dense Al deposition. As a result, the dual-functional Mo@NG endows Al anodes with low voltage hysteresis, reversible Al plating/stripping with high coulombic efficiency, and excellent high-rate capability under 5 mA cm-2 . Moreover, the as-designed Al metal full batteries deliver a high capacity retention of 92.8% after 3000 cycles at 1 A g-1 . This work provides an effective solution to optimize the electrochemical properties of Al metal anode from the perspective of desolvation and deposition reactions, towards the development of high-safety and long-cycling aluminum-ion batteries.

11.
Br J Neurosurg ; 37(3): 340-342, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32297531

RESUMEN

Distinct tumors in direct contact with one another are known as collision tumors and collision tumors of meningioma and metastatic renal cell carcinoma have not been previously reported. We report a 71-year-old female with a history of renal cell carcinoma who was presented with slow response and gait imbalance for 4 months. Brain MRI showed a mass in the base of right middle cranial fossa. The mass was completely removed. Histopathologic and radiographic findings provided evidence for a collision composed of meningioma and metastatic renal clear cell carcinoma.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Meníngeas , Meningioma , Femenino , Humanos , Anciano , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Meningioma/patología , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/cirugía , Carcinoma de Células Renales/secundario , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/cirugía , Neoplasias Renales/secundario
12.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902234

RESUMEN

BG45 is a class Ⅰ histone deacetylase inhibitor (HDACI) with selectivity for HDAC3. Our previous study demonstrated that BG45 can upregulate the expression of synaptic proteins and reduce the loss of neurons in the hippocampus of APPswe/PS1dE9 (APP/PS1) transgenic mice (Tg). The entorhinal cortex is a pivotal region that, along with the hippocampus, plays a critical role in memory in the Alzheimer's disease (AD) pathology process. In this study, we focused on the inflammatory changes in the entorhinal cortex of APP/PS1 mice and further explored the therapeutic effects of BG45 on the pathologies. The APP/PS1 mice were randomly divided into the transgenic group without BG45 (Tg group) and the BG45-treated groups. The BG45-treated groups were treated with BG45 at 2 months (2 m group), at 6 months (6 m group), or twice at 2 and 6 months (2 and 6 m group). The wild-type mice group (Wt group) served as the control. All mice were killed within 24 h after the last injection at 6 months. The results showed that amyloid-ß (Aß) deposition and IBA1-positive microglia and GFAP-positive astrocytes in the entorhinal cortex of the APP/PS1 mice progressively increased over time from 3 to 8 months of age. When the APP/PS1 mice were treated with BG45, the level of H3K9K14/H3 acetylation was improved and the expression of histonedeacetylase1, histonedeacetylase2, and histonedeacetylase3 was inhibited, especially in the 2 and 6 m group. BG45 alleviated Aß deposition and reduced the phosphorylation level of tau protein. The number of IBA1-positive microglia and GFAP-positive astrocytes decreased with BG45 treatment, and the effect was more significant in the 2 and 6 m group. Meanwhile, the expression of synaptic proteins synaptophysin, postsynaptic density protein 95, and spinophilin was upregulated and the degeneration of neurons was alleviated. Moreover, BG45 reduced the gene expression of inflammatory cytokines interleukin-1ß and tumor necrosis factor-α. Closely related to the CREB/BDNF/NF-kB pathway, the expression of p-CREB/CREB, BDNF, and TrkB was increased in all BG45 administered groups compared with the Tg group. However, the levels of p-NF-kB/NF-kB in the BG45 treatment groups were reduced. Therefore, we deduced that BG45 is a potential drug for AD by alleviating inflammation and regulating the CREB/BDNF/NF-kB pathway, and the early, repeated administration of BG45 can play a more effective role.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Corteza Entorrinal , Inhibidores de Histona Desacetilasas , Inflamación , Microglía , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Inflamación/metabolismo , Ratones Transgénicos , Microglía/metabolismo , FN-kappa B/metabolismo , Presenilina-1/genética , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico
13.
Small ; 18(43): e2106981, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35182102

RESUMEN

Rechargeable magnesium (Mg)-ion batteries have received growing attention as a next-generation battery system owing to their advantages of sufficient reserves, lower cost, better safety, and higher volumetric energy density than lithium-ion batteries. However, Mg as an anode can be easily passivated during charging/discharging by most common solvents, which are inconducive for magnesium deposition/stripping. Based on this, the development of Mg-ion solid-state electrolytes in the last decades led to the formulization of several concepts beyond previously reported designs. These exciting studies have once again sparked an interest in all-solid-state magnesium-ion batteries. In this review, Mg solid-state electrolytes, including inorganic (oxides, hydrides, and chalcogenides) and organic (metal-organic frameworks and polymers) materials are classified and summarized in detail. Moreover, the structural characteristics and the migration mechanism of Mg2+ ions are also discussed with a focus on pending questions and future prospects.

14.
Small ; 18(35): e2202978, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35934814

RESUMEN

Requiring high temperature for hydrogen storage is the main feature impeding practical application of light metal hydrides. Herein, to lift the restrictions associated with traditional electric heating, light is used as an alternative energy input, and a light-mediated catalytic strategy coupling photothermal and catalytic effects is proposed. With NaAlH4 as the initial target material, TiO2 nanoparticles uniformly distribute on carbon nanosheets (TiO2 @C), which couples the catalytic effect of TiO2 and photothermal property of C, is constructed to drive reversible hydrogen storage in NaAlH4 under light irradiation. Under the catalysis of TiO2 @C, complete hydrogen release from NaAlH4 is achieved within 7 min under a light intensity of 10 sun. Furthermore, owing to the stable catalytic and photothermal effect of TiO2 @C, NaAlH4 delivers a reversible capacity of 4 wt% after 10 cycles with a capacity retention of 85% under light irradiation only. The proposed strategy is also applicable to other light metal hydrides such as LiAlH4 and MgH2 , validating its universality. The concept of light-driven hydrogen storage provides an alternative approach to electric heating, and the light-mediated catalytic strategy proposed herein paves the way to the design of reversible high-density hydrogen storage systems that do not rely on artificial energy.

15.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807406

RESUMEN

As a neurodegenerative disease, Alzheimer's disease (AD) seriously affects the health of older people. Changes in synapses occur first over the course of the disease, perhaps even before the formation of Aß plaques. Histone deacetylase (HDAC) mediates the damage of Aß oligomers to dendritic spines. Therefore, we examined the relationship between HDAC activity and synaptic defects using an HDAC inhibitor (HDACI), BG45, in the human neuroblastoma SH-SY5Y cell line with stable overexpression of Swedish mutant APP (APPsw) and in APP/PS1 transgenic mice during this study. The cells were treated with 15 µM BG45 and the APP/PS1 mice were treated with 30 mg/kg BG45. We detected the levels of synapse-related proteins, HDACs, tau phosphorylation, and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors using Western blotting and immunohistochemistry. We also measured the expression of cytoskeletal proteins in the cell model. The mRNA levels of the glutamate ion receptor alginate subunit 2 (GRIK2), sodium voltage-gated channel beta subunit (SCN3B), synaptophysin (SYP), Grm2 (the gene encoding glutamate receptor subunit 2 (GluR2)), Grid2IP, glutamate receptor interacting protein 1 (GRIP1), and GRIP2 were detected to explore the effects of the HDACI on regulating the expression of synaptic proteins and AMPA receptors. According to our studies, the expressions of HDAC1, HDAC2, and HDAC3 were increased, which were accompanied by the downregulation of the synapse-related proteins SYP, postsynaptic dendritic protein (PSD-95), and spinophilin as early as 24 h after transfection with the APPsw gene. BG45 upregulated the expression of synapse-related proteins and repaired cytoskeletal damage. In vivo, BG45 alleviated the apoptosis-mediated loss of hippocampal neurons, upregulated synapse-related proteins, reduced Aß deposition and phosphorylation of tau, and increased the levels of the synapse-related genes GRIK2, SCN3B, SYP, Grm2, and Grid2IP. BG45 increased the expression of the AMPA receptor subunits GluA1, GluA2, and GluA3 on APPsw-transfected cells and increased GRIP1 and GRIP2 expression and AMPA receptor phosphorylation in vivo. Based on these results, HDACs are involved in the early process of synaptic defects in AD models, and BG45 may rescue synaptic damage and the loss of hippocampal neurons by specifically inhibiting HDAC1, HDAC2, and HDAC3, thereby modulating AMPA receptor transduction, increasing synapse-related gene expression, and finally enhancing the function of excitatory synapses. BG45 may be considered a potential drug for the treatment of early AD in further studies.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Enfermedades Neurodegenerativas , Proteínas Adaptadoras Transductoras de Señales , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas Portadoras , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores AMPA/uso terapéutico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/uso terapéutico
16.
Small ; 17(44): e2101845, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34561946

RESUMEN

On account of easy accessibility, high theoretical volumetric capacity and dendrite-free magnesium (Mg) anode, Mg battery has a great promise to be next generation rechargeable batteries, yet still remains a challenging task in acquiring fast Mg2+ kinetics and effective cathode materials. Herein, hierarchical 3D cuprous sulfide porous nanosheet decorated nanowire cluster arrays with robust adhesion on copper foam (Cu2 S HP/CF), which is employed as a binder-free conversion cathode material for magnesium/lithium hybrid battery, delivering impressively initial and reversible specific capacity of 383 and 311 mAh g-1 at 100 mA g-1 , respectively, which are obviously outperformed corresponding powder cathode in a traditional method by using polymer binder, is reported. Intriguingly, benefiting from the hierarchical nanoporous array architecture and self-assembly feature, Cu2 S HP/CF cathode shows a remarkable cycling stability with a high capacity of 129 mAh g-1 at 300 mA g-1 over 500 cycles. This work not only highlights a guide for designing hierarchical nanoporous materials derived from metal-organic frameworks, but also provides a novel strategy of in situ formation to fabricate binder-free cathodes.

17.
Small ; 15(44): e1903652, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31529600

RESUMEN

The feasibility of transition metal carbides (TMCs) as promising high-rate electrodes is still hindered by low specific capacity and sluggish charge transfer kinetics. Improving charge transport kinetics motivates research toward directions that would rely on heterostructures. In particular, heterocomposing with carbon-rich TMCs is highly promising for enhancing Li storage. However, due to limited synthesis methods to prepare carbon-rich TMCs, understanding the interfacial interaction effect on the high-rate performance of TMCs is often neglected. In this work, a novel strategy is proposed to construct a binary carbide heteroelectrode, i.e. incorporating the carbon-rich TMC (M=Mo) with its metal-rich TMC nanowires (nws) via an ingenious in situ disproportionation reaction. Results show that the as-prepared MoC-Mo2 C-heteronanowires (hnws) electrode could fully recover its capacity after high-rates testing, and also possesses better lithium accommodation performance. Kinetic analysis verified that both electron and ion transfer in MoC-Mo2 C-hnws are superior to those of its singular counterparts. Such improvements suggest that by taking utilization of the interfacial component interactions of stoichiometry tunable heterocarbides, the electrochemical performance, especially high-rate capability of carbides, could be significantly enhanced.

18.
Small ; 13(44)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28722318

RESUMEN

Fe2 O3 is regarded as a promising anode material for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to its high specific capacity. The large volume change during discharge and charge processes, however, induces significant cracking of the Fe2 O3 anodes, leading to rapid fading of the capacity. Herein, a novel peapod-like nanostructured material, consisting of Fe2 O3 nanoparticles homogeneously encapsulated in the hollow interior of N-doped porous carbon nanofibers, as a high-performance anode material is reported. The distinctive structure not only provides enough voids to accommodate the volume expansion of the pea-like Fe2 O3 nanoparticles but also offers a continuous conducting framework for electron transport and accessible nanoporous channels for fast diffusion and transport of Li/Na-ions. As a consequence, this peapod-like structure exhibits a stable discharge capacity of 1434 mAh g-1 (at 100 mA g-1 ) and 806 mAh g-1 (at 200 mA g-1 ) over 100 cycles as anode materials for LIBs and SIBs, respectively. More importantly, a stable capacity of 958 mAh g-1 after 1000 cycles and 396 mAh g-1 after 1500 cycles can be achieved for LIBs and SIBs, respectively, at a large current density of 2000 mA g-1 . This study provides a promising strategy for developing long-cycle-life LIBs and SIBs.

19.
Chemistry ; 21(42): 14931-6, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26315468

RESUMEN

Due to its high hydrogen density (14.8 wt %) and low dehydrogenation peak temperature (130 °C), Zr(BH4 )4 ⋅8 NH3 is considered to be one of the most promising hydrogen-storage materials. To further decrease its dehydrogenation temperature and suppress its ammonia release, a strategy of introducing LiBH4 and Mg(BH4 )2 was applied to this system. Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 composites showed main dehydrogenation peaks centered at 81 and 106 °C as well as high hydrogen purities of 99.3 and 99.8 mol % H2 , respectively. Isothermal measurements showed that 6.6 wt % (within 60 min) and 5.5 wt % (within 360 min) of hydrogen were released at 100 °C from Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 and Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , respectively. The lower dehydrogenation temperatures and improved hydrogen purities could be attributed to the formation of the diammoniate of diborane for Zr(BH4 )4 ⋅8 NH3 -4 LiBH4 , and the partial transfer of NH3 groups from Zr(BH4 )4 ⋅8 NH3 to Mg(BH4 )2 for Zr(BH4 )4 ⋅8 NH3 -2 Mg(BH4 )2 , which result in balanced numbers of BH4 and NH3 groups and a more active H(δ+) ⋅⋅⋅(-δ) H interaction. These advanced dehydrogenation properties make these two composites promising candidates as hydrogen-storage materials.

20.
Adv Sci (Weinh) ; 11(22): e2400274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520071

RESUMEN

Hydrogen storage in MgH2 is an ideal solution for realizing the safe storage of hydrogen. High operating temperature, however, is required for hydrogen storage of MgH2 induced by high thermodynamic stability and kinetic barrier. Herein, flower-like microspheres uniformly constructed by N-doped TiO2 nanosheets coated with TiN nanoparticles are fabricated to integrate the light absorber and thermo-chemical catalysts at a nanometer scale for driving hydrogen storage of MgH2 using solar energy. N-doped TiO2 is in situ transformed into TiNxOy and Ti/TiH2 uniformly distributed inside of TiN matrix during cycling, in which TiN and Ti/TiHx pairs serve as light absorbers that exhibit strong localized surface plasmon resonance effect with full-spectrum light absorbance capability. On the other hand, it is theoretically and experimentally demonstrated that the intimate interface between TiH2 and MgH2 can not only thermodynamically and kinetically promote H2 desorption from MgH2 but also simultaneously weaken Ti─H bonds and hence in turn improve H2 desorption from the combination of weakened Ti─H and Ti─H bonds. The uniform integration of photothermal and catalytic effect leads to the direct action of localized heat generated from TiN on initiating the catalytic effect in realizing hydrogen storage of MgH2 with a capacity of 6.1 wt.% under 27 sun.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA