Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Chem Soc ; 146(14): 9709-9720, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38546406

RESUMEN

Chemically modifying monolayer two-dimensional transition metal dichalcogenides (TMDs) with organic molecules provides a wide range of possibilities to regulate the electronic and optoelectronic performance of both materials and devices. However, it remains challenging to chemically attach organic molecules to monolayer TMDs without damaging their crystal structures. Herein, we show that the Mo atoms of monolayer MoS2 (1L-MoS2) in defect states can coordinate with both catechol and 1,10-phenanthroline (Phen) groups, affording a facile route to chemically modifying 1L-MoS2. Through the design of two isomeric molecules (LA2 and LA5) comprising catechol and Phen groups, we show that attaching organic molecules to Mo atoms via coordinative bonds has no negative effect on the crystal structure of 1L-MoS2. Both theoretical calculation and experiment results indicate that the coordinative strategy is beneficial for (i) repairing sulfur vacancies and passivating defects; (ii) achieving a long-term and stable n-doping effect; and (iii) facilitating the electron transfer. Field effect transistors (FETs) based on the coordinatively modified 1L-MoS2 show high electron mobilities up to 120.3 cm2 V-1 s-1 with impressive current on/off ratios over 109. Our results indicate that coordinatively attaching catechol- or Phen-bearing molecules may be a general method for the nondestructive modification of TMDs.

2.
Small ; 20(22): e2309176, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38150625

RESUMEN

Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.

3.
J Am Chem Soc ; 144(22): 9624-9633, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605024

RESUMEN

Imine-linked covalent organic frameworks (COFs) have received widespread attention because of their structure features such as high crystallinity and tunable pores. However, the intrinsic reversibility of the imine bond leads to the poor stability of imine-linked COFs under strong acid conditions. Also, their thermal stability is significantly lower than that of many other COFs. Herein, we report for the first time that the reversible imine bonds in the skeleton of COFs can be locked through the asymmetric hydrophosphonylation reaction of phosphite. The functionalized COFs not only retain the crystallinity and porous structure but also exhibit evidently improved chemical and thermal stabilities. In addition, the phosphorous acid groups generated by acidic hydrolysis attached to the skeleton endow the COFs with good intrinsic proton conductivity. Due to the diversity of phosphite derivatives and imine-linked COFs, this work may provide an avenue for extending the COF structures and functions through the asymmetric hydrophosphonylation reaction.

4.
Small ; 18(33): e2203148, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35871499

RESUMEN

Metallopolymers combine the property features of both metallic compounds and organic polymers, representing a typical direction for the design of high-performance hybrid materials. Here, a highly adaptive etching method to create pores and cavities in the metallopolymer particles is established. Starting from boronate polymer (BP) and inorganic@BP core-shell particles, porous, hollow, and yolk-shell metallopolymer particles can be fabricated, respectively. By taking advantage of the easy control over composition and pore/cavity structure, these metallopolymer particles provide a universal platform for the fabrication of nitrogen, boron co-doped carbon nanocomposites loaded with metals (M-NBCs). The as-prepared M-NBCs exhibit remarkable catalytic activities toward oxygen evolution reaction and hydrogen evolution reaction. An alkaline overall water splitting cell assembled by using M-NBCs as the anode and cathode can be driven by a single AAA battery. The proposed strategy for the construction of metallopolymer composites may enlighten for the design of complex hybrid nanomaterials.


Asunto(s)
Nanocompuestos , Polímeros , Catálisis , Nanocompuestos/química , Polímeros/química , Porosidad , Agua
5.
Nanotechnology ; 33(40)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35732158

RESUMEN

We report a simple metal ion-catechol coordination strategy to coat ruthenium-catechol polymer complex (TAC-Ru) on the surface of carbon nanotubes (CNT) to form a core-shell structure (abbreviated as CNT@TAC-Ru). This is achieved by firstly polymerizing catechol and boronic acid monomers on the surface of CNT to form a boronate ester polymer (BP) shell. Then, Ru3+is used to etch the BP shell, and cleave the dynamic boronate ester bond, leading to the formation of a CNT@ruthenium-catechol coordination complex based on the coordinative efficiency of the catechol group. The electrocatalytic property of the CNT@TAC-Ru composite can be activated through electrochemical cycling treatment. The as-activated CNT@TAC-Ru exhibits evidently improved hydrogen evolution reaction (HER) performance with an overpotential of 10 mV in 1.0 M KOH at a current density of 10 mA cm-2, which is better than that of commercial Pt/C (32 mV). And the long-term stability is also desirable. This work provides a pyrolysis-free method to form metal-polymer-carbon composite with high HER performance under the alkaline condition.

6.
Macromol Rapid Commun ; 43(23): e2200562, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35926186

RESUMEN

The underlying trend of colloidal synthesis has focused on extending the structure and composition complexity of colloidal particles. Hollow and yolk-shell particles are successful examples that have potential applications in frontier fields. In this paper, a facile and controllable etching method based on the molecular exchange of the dynamic imine bond to generate cavities in polymer particles is developed. Starting from boronate ester polymer particles and inorganic@boronate core-shell particles with the imine bonds incorporated in the polymer networks, the etching method easily affords hollow and yolk-shell particles with tunable shell thicknesses. The molecular exchange dynamics analysis indicates that guest amine molecules cause the reconstruction of imine bonds and the leakage of molecular and oligomer fragments, resulting in the formation of the hollow structure. This molecular exchange-based etching method may be of interest in the construction of polymer architectures with increased composition and structure complexities.

7.
Nanotechnology ; 32(30)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33827051

RESUMEN

Schiff base formation reaction is highly dynamic, and the microstructure of Schiff base polymers is greatly affected by reaction kinetics. Herein, a series of Schiff base cross-linked polymers (SPs) with different morphologies are synthesized through adjusting the species and amount of catalysts. Nitrogen/oxygen co-doped hierarchical porous carbon nanoparticles (HPCNs), with tunable morphology, specific surface area (SSA) and porosity, are obtained after one-step carbonization. The optimal sample (HPCN-3) possesses a coral reef-like microstructure, high SSA up to 1003 m2g-1, and a hierarchical porous structure, exhibiting a remarkable specific capacitance of 359.5 F g-1(at 0.5 A g-1), outstanding rate capability and cycle stability in a 1 M H2SO4electrolyte. Additionally, the normalized electric double layer capacitance (EDLC) and faradaic capacitance of HPCN-3 are 0.239 F m-2and 10.24 F g-1respectively, certifying its superior electrochemical performance deriving from coral reef-like structure, high external surface area and efficient utilization of heteroatoms. The semi-solid-state symmetrical supercapacitor based on HPCN-3 delivers a capacitance of 55 F g-1at 0.5 A g-1, good cycle stability of 86.7% after 5000 GCD cycles at 10 A g-1, and the energy density ranges from 7.64 to 4.86 Wh kg-1.

8.
Nanotechnology ; 30(30): 305402, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30865933

RESUMEN

Simultaneous introduction of both transition metal and other inorganic elements into the carbon matrix has attracted great attention in the fabrication of carbon materials with high electrochemical properties. Herein, rational design of ligand-iron coordinative supramolecular precursors is achieved for the fabrication of Fe-N/C catalysts, which possess high oxygen reduction reaction (ORR) performance. A series of precursors are prepared by a simple coordination reaction between a three armed catechol monomer and iron ions. Particular interest is focused on tuning the doping species, surface area and morphology of the Fe-N/C catalysts through a simple selection of iron resources. We show that an Fe-N/C catalyst derived from Fe2(SO4)3 at a carbonization temperature of 800 °C, has the optimized ORR performance with an onset potential of 0.930 V and half-wave potential of 0.801 V. Detailed investigation indicates that the synergistic effect among doping elements of nitrogen and sulfur and the unique carbon structure determines the performance of the Fe-N/C catalysts. Our findings may be of significance for the fabrication of doped carbon materials using coordinative supramolecular polymers as precursors.

9.
J Am Chem Soc ; 140(24): 7629-7636, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29792331

RESUMEN

Core-shell structures are of particular interest in the development of advanced composite materials as they can efficiently bring different components together at nanoscale. The advantage of this structure greatly relies on the crucial design of both core and shell, thus achieving an intercomponent synergistic effect. In this report, we show that decorating semiconductor nanocrystals with a boronate polymer shell can easily achieve programmable core-shell interactions. Taking ZnO and anatase TiO2 nanocrystals as inner core examples, the effective core-shell interactions can narrow the band gap of semiconductor nanocrystals, change the HOMO and LUMO levels of boronate polymer shell, and significantly improve the carrier density of core-shell particles. The hole mobility of core-shell particles can be improved by almost 9 orders of magnitude in comparison with net boronate polymer, while the conductivity of core-shell particles is at most 30-fold of nanocrystals. The particle engineering strategy is based on two driving forces: catechol-surface binding and B-N dative bonding and having a high ability to control and predict the shell thickness. Also, this approach is applicable to various inorganic nanoparticles with different components, sizes, and shapes.

10.
Mol Pharm ; 12(3): 769-82, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25625539

RESUMEN

The design of nanoscale drug delivery systems for the targeted codelivery of multiple therapeutic drugs still remains a formidable challenge (ACS Nano, 2013, 7, 9558-9570; ACS Nano, 2013, 7, 9518-9525). In this article, both mitomycin C (MMC) and methotrexate (MTX) loaded DSPE-PEG micelles (MTX-M-MMC) were prepared by self-assembly using the dialysis technique, in which MMC-soybean phosphatidylcholine complex (drug-phospholipid complex) was encapsulated within MTX-functionalized DSPE-PEG micelles. MTX-M-MMC could coordinate an early phase active targeting effect with a late-phase synergistic anticancer effect and enable a multiple-responsive controlled release of both drugs (MMC was released in a pH-dependent pattern, while MTX was released in a protease-dependent pattern). Furthermore, MTX-M-MMC could codeliver both drugs to significantly enhance the cellular uptake, intracellular delivery, cytotoxicity, and apoptosis in vitro and improve the tumor accumulation and penetration and anticancer effect in vivo compared with either both free drugs treatment or individual free drug treatment. To our knowledge, this work provided the first example of the systemically administrated, orthogonally functionalized, and self-assisted nanoscale micelles for targeted combination cancer chemotherapy. The highly convergent therapeutic strategy opened the door to more simplified, efficient, and flexible nanoscale drug delivery systems.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Metotrexato/administración & dosificación , Mitomicina/administración & dosificación , Animales , Biofarmacia , Portadores de Fármacos/química , Sinergismo Farmacológico , Femenino , Células HeLa , Humanos , Metotrexato/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Micelas , Mitomicina/farmacocinética , Nanocápsulas/química , Nanotecnología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nanotechnology ; 26(45): 455302, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26472271

RESUMEN

Exploitation of facile and versatile synthetic approaches to polymeric nanoarchitectures is of great interest in polymer science and engineering. Herein, we show that a simple hydrothermal route using double-solvents as reaction media has the ability to generate polymer nanospheres with tunable morphologies and components. In this one-pot approach, condensation polymerization of a resol precursor and radical polymerization of styrene are allowed to occur simultaneously under hydrothermal treatment. The synergistic self-organization of phenol-formaldehyde crosslinked networks and polystyrene chains leads to the formation of well-defined hollow nanospheres with adjustable shell thickness or even Janus particles comprising a solid hemisphere and a hollow hemisphere. Furthermore, control over the composition of the hollow polymer nanospheres can be easily achieved by introducing a third monomer into the hydrothermal system.

12.
Nanotechnology ; 26(2): 025103, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25526236

RESUMEN

Polymer assemblies with good biocompatibility, stimuli-responsive properties and clinical imaging capability are desirable carriers for future biomedical applications. Herein, we report on the synthesis of a novel anthracenecarboxaldehyde-decorated poly(N-(4-aminophenyl) methacryl amide-oligoethyleneglycolmonomethylether methacrylate) (P(MAAPAC-MAAP-MAPEG)) copolymer, comprising fluorescent chromophore and acid-labile moiety. This copolymer can assemble into micelles in aqueous solution and shows a spherical shape with well-defined particle size and narrow particle size distribution. The pH-responsive property of the micelles has been evaluated by the change of particle size and the controlled release of guest molecules. The intrinsic fluorescence property endows the micelles with excellent cell/tissue imaging capability. Cell viability evaluation with human hepatocellular carcinoma BEL-7402 cells demonstrates that the micelles are nontoxic. The cellular uptake of the micelles indicates a time-dependent behavior. The H22-tumor bearing mice treated with the micelles clearly exhibits the tumor accumulation. These multi-functional nanocarriers may be of great interest in the application of drug delivery.


Asunto(s)
Preparaciones de Acción Retardada , Imagen Molecular/métodos , Polímeros/química , Animales , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Endocitosis , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratones Endogámicos BALB C , Ratones Desnudos , Micelas , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Polímeros/síntesis química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
13.
Angew Chem Int Ed Engl ; 54(44): 12991-5, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26350027

RESUMEN

The use of reversible linkers in polymers has been of interest mainly for biomedical applications. Herein, we present a novel strategy to utilize reversible interactions in polymeric nanoparticles to generate hollow metal-organic nanoparticles (MOPs). These hollow MOPs are synthesized from self-assembled polymeric nanoparticles using a simple metal-comonomer exchange process in a single step. The control over the size of the polymer precursor particles translates into a straightforward opportunity for controlling MOP sizes. The shell thickness of the MOPs could be easily tuned by the concentration of metal ions in solution. The underlying mechanism for the formation of these hollow MOPs has been proposed. Evidence for the generality of the method is provided by its application to a variety of metal ions with different coordination geometries.

14.
Sci Adv ; 10(25): eadp0730, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896623

RESUMEN

Flexible and stretchable electronic devices are subject to failure because of vulnerable circuit interconnections. We develop a low-voltage (1.5 to 4.5 V) and rapid (as low as 5 s) electric welding strategy to integrate both rigid electronic components and soft sensors in flexible circuits under ambient conditions. This is achieved through the design of conductive elastomers composed of borate ester polymers and conductive fillers, which can be self-welded and generate welding effects to various materials including metals, hydrogels, and other conductive elastomers. The welding effect is generated through the electrochemical reaction-triggered exposure of interfacial adhesive promotors or the cleavage/reformation of dynamic bonds. Our strategy can ensure both mechanical compliance and conductivity at the circuit interfaces and easily produce welding strengths in the kilopascal to megapascal range. The as-designed conductive elastomers in combination with the electric welding technique provide a robust platform for constructing standalone flexible and stretchable electronic devices that are detachable and assemblable on demand.

15.
Nanotechnology ; 24(18): 185602, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23575350

RESUMEN

This paper introduces not only a simple hydrothermal route to silver-polyaniline (Ag-PANI) nanocomposites with controllable morphology, but also a type of catalyst possessing tunable and switchable catalytic capability. Ag-PANI Janus nanoparticles (NPs) and Ag@PANI core-shell NPs have been constructed successfully at different hydrothermal temperatures. The diameter of both Ag and PANI hemispheres of Janus NPs, as well as the PANI shell thickness of core-shell NPs, was finely tuned via adjustment of the feed ratio. We also gained a deeper insight into the functionalities of PANI components in the catalytic capability of the heterogeneous catalysts, choosing catalytic reductions of nitrobenzene (NB) and 4-nitrophenol (4-NP) as model reactions. Our results showed that the catalytic capability of the nanocomposites was dependent on the PANI morphology and hydrophobicity. The PANI shell coating on Ag NPs can concentrate the lipophilic NB, thus leading to an enhanced catalytic capability of Ag@PANI core-shell NPs. However, this enhanced catalytic capability was not observed for Ag-PANI Janus NPs when catalytically reducing NB. More importantly, the catalytic capability of the core-shell NPs in the reduction of hydrophilic 4-NP is switchable by varying the PANI shell from an undoped to a doped state.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37878837

RESUMEN

Hydrogels have attracted widespread attention in anticounterfeiting due to their unique physical/chemical properties and designability. However, hydrogels' poor mechanical properties and sluggish response to chemical stimuli pose challenges for their wide application. A fluorescent tough organohydrogel capable of freeform writing of information is reported in this work. By incorporation of the fluorescent monomer 7-methylacryloxy-4-methylcoumarin into the polyacrylamide network in a covalently cross-linked manner while intertwining with the carboxymethyl cellulose sodium network, a fluorescent tough organohydrogel with a dual-network structure is prepared. The organohydrogel shows acid-base-mediated adjustable fluorescence through the transformation of fluorescent monomers. Ion printing and electrical stimulation design achieved free information storage and encryption. In addition, the prepared organohydrogel has good antifreezing properties and can be encrypted and decrypted at subzero temperatures. The encrypted information in the organohydrogel can be read only after UV-light irradiation. These patterned fluorescent organohydrogels should find applications in protected message displays for improved information security.

17.
Nanotechnology ; 23(17): 175301, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22481383

RESUMEN

Core-shell nanospheres (CSNSs) with hydrophobic cores and hydrophilic shells were fabricated via a simple mini-emulsion polymerization for the stabilization of platinum nanoparticles (Pt-NPs). The CSNSs showed extremely high loading capacity of Pt-NPs (the largest loading amount of the Pt-NPs was about 49.2 wt%). Importantly, the Pt-NPs/CSNSs nanocomposites had unexpected stability in aqueous solution. DLS results revealed that the CSNSs loaded with Pt-NPs exhibited almost no aggregation after standing for a long time . However, the Pt-NPs immobilized on the CSNSs were not straitlaced: they could transport and redistribute between CSNSs freely when the environmental temperature was higher than the melting point of the CSNS shell. Owing to their excellent stability in aqueous solution, the surface of the Pt-NPs/CSNSs nanocomposites could be further decorated easily. For example, polyaniline (PANI)-coated Pt-NPs/CSNSs, nickel (Ni)-coated Pt-NPs/CSNSs and PANI/Pt-NPs dual-layer hollow nanospheres were facilely fabricated from the Pt-NPs/CSNS nanocomposites.


Asunto(s)
Nanopartículas del Metal/química , Nanocompuestos/química , Nanosferas/química , Platino (Metal)/química , Compuestos de Anilina/química , Estabilidad de Medicamentos , Emulsiones/química , Interacciones Hidrofóbicas e Hidrofílicas , Níquel/química
18.
Carbohydr Polym ; 288: 119384, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35450646

RESUMEN

Multifunctional cotton fabrics (M-CF) have important application prospects in intelligent home decoration and material packaging. In this work, nanoparticles (AgNC@BP) were prepared by coating the surface of silver nanocubes (AgNCs) with borate polymer. Subsequently, M-CF with electromagnetic wave (EMW) absorption, mechanical enhancement, flame-retardancy and antibacterial performances were prepared by immersing cotton fabrics (CF) into AgNC@BP/crosslinked chitosan (CS) solution. Expectantly, AgNC@BP endows AgNC@BP/CS-CF with good flame retardancy and low combustion heat release. That is, the char length of AgNC@BP/CS-CF is 7.9 cm after the vertical burning test (UL-94 V) and the peak heat release rate (pHRR) of AgNC@BP/CS-CF is reduced by 21.4% compared to pure CF. Meanwhile, the tensile strength of AgNC@BP/CS-CF is 18.8% higher than that of CF. Synchronously, the introduction of AgNC@BP can also endow M-CF with better EMW absorption, mechanical and antibacterial properties. In conclusion, this work provides a tactic for fabricating M-CF.


Asunto(s)
Quitosano , Retardadores de Llama , Antibacterianos/farmacología , Fibra de Algodón , Polímeros
19.
J Colloid Interface Sci ; 616: 268-278, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35219192

RESUMEN

In order to overcome the structural drawbacks of layered electrodes in flexible supercapacitors, the construction of an electrode frame with high adaptability for the loading of different active materials makes the production of flexible supercapacitors simpler and more accurate. Herein, a novel loader type flexible supercapacitor with three-dimensional hybrid structure is built. In our design, the acetylene black and active material are enriched in the polyvinyl alcohol matrix, and the three-dimensional conductive network that can load different active material is formed. The active material can be selected on demand. The basic electrode (also a loader) formed by polyvinyl alcohol and acetylene black is an electronic conductor (∼1 Scm-1) with good electrochemical and mechanical performance. By loading active materials in this basic electrode, more powerful flexible electrodes can be built easily and accurately with the same steps according to the designed proportion. Electrodes constructed according to this method deliver nonnegligible surface capacity (e.g. 1.1 Fcm-2 in surface capacitance, polyaniline/carbon nanotube composite as active materials) with good response, rate performance, excellent durability (10000 times of charge-discharge), and good foldability (1000 times of folding). This pattern of carrier type electrodes provides a simple and universal strategy for manufacturing flexible supercapacitors.

20.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35160395

RESUMEN

Due to unique chelating and macrocyclic effects, crown ether compounds exhibit wide application prospects. They could be introduced into amphiphilic copolymers to provide new trigger mode for drug delivery. In this work, new amphiphilic random polymers of poly(lipoic acid-methacrylate-co-poly(ethylene glycol) methyl ether methacrylate-co-N-isopropylacrylamide-co-benzo-18-crown-6-methacrylamide (abbrev. PLENB) containing a crown ether ring and disulphide bond were synthesized via RAFT polymerization. Using the solvent evaporation method, the PLENB micelles were formed and then used to load substances, such as doxorubicin hydrochloride (DOX) and gold nanoparticles. The results showed that PLENB exhibited a variety of lowest critical solution temperature (LCST) in response to the presence of different ions, such as K+, Na+ and Mg2+. In particular, the addition of 150 mM K+ increased the LCST of PLENB from 31 to 37 °C and induced the release of DOX from the PLENB@DOX assemblies with a release rate of 99.84% within 12 h under 37 °C. However, Na+ and Mg2+ ions could not initiate the same response. Furthermore, K+ ions drove the disassembly of gold aggregates from the PLENB-SH@Au assemblies to achieve the transport of Au NPs, which is helpful to construct a K+-triggered carrier system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA