Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2222096120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252989

RESUMEN

Rational design and synthesis of high-performance electrocatalysts for ethanol oxidation reaction (EOR) is crucial to large-scale commercialization of direct ethanol fuel cells, but it is still an incredible challenge. Herein, a unique Pd metallene/Ti3C2Tx MXene (Pdene/Ti3C2Tx)-supported electrocatalyst is constructed via an in-situ growth approach for high-efficiency EOR. The resulting Pdene/Ti3C2Tx catalyst achieves an ultrahigh mass activity of 7.47 A mgPd-1 under alkaline condition, as well as high tolerance to CO poisoning. In situ attenuated total reflection-infrared spectroscopy studies combined with density functional theory calculations reveal that the excellent EOR activity of Pdene/Ti3C2Tx catalyst is attributed to the unique and stable interfaces which reduce the reaction energy barrier of *CH3CO intermediate oxidation and facilitate oxidative removal of CO poisonous species by increasing the Pd-OH binding strength.

2.
Phys Chem Chem Phys ; 26(24): 17274-17281, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38860342

RESUMEN

Grain boundary (GB) segregation plays a pivotal role in maintaining and optimizing the remarkable catalytic or mechanical properties of nanocrystalline Pt by reducing the Gibbs free energy and thereby impeding structure degradation. The solute segregation behavior at the Pt GB, however, is not well understood at the atomic level. In this study, we employed first-principles calculations to elucidate the preferential segregation behavior of a single Au atom at the symmetrical tilt GB of Pt. For pure Pt, a linear relationship between the GB energy and excess volume is observed. Therefore, Au exhibits strong segregation tendencies towards GB to release excess energy and volume stored at the strained GB. Although the segregation energy is sensitive to various GB sites, it is interesting to note that the minimum one increases linearly with GB energy. This site-sensitivity of segregation energy can be attributed to mechanical, chemical, and interaction parts, which are quantitatively related to the atomic volume, coordination number, and average bond length, respectively. Finally, the interplay among different structural descriptors is revealed. These insights into the association between GB structures, segregation configuration and energy offers valuable atomic-scale quantitative insights into the segregation behavior of Au in Pt GBs, which holds significant implications for the design of Pt nanomaterials with enhanced thermal stability via GB engineering.

3.
J Am Chem Soc ; 144(22): 9618-9623, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35486711

RESUMEN

The catalytic scission of single chemical bonds has been induced by the nanoscale confinement in a scanning tunneling microscope (STM) junction. Individual hydrogen molecules sandwiched between the STM tip and a copper substrate can be dissociated solely by the reciprocating movement of the tip. The reaction rate depends sensitively on the local molecular environment, as exemplified by the effects of a nearby carbon monoxide molecule or a gold adatom. Detailed mechanisms and the nature of the transition states are revealed by density functional theory (DFT) calculations. This work provides insights into chemical reactions at the atomic scale induced by localized confinement applied by the STM tip. Furthermore, a single diatomic molecule can act as a molecular catalyst to enhance the reaction rate on a surface.

4.
Phys Chem Chem Phys ; 24(22): 13784-13792, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35612400

RESUMEN

When benchmarked against the extended Pt(111), slightly weaker adsorption and stronger cohesion properties of surface Pt are required to improve activity and durability for the oxygen reduction reaction, respectively, making it challenging to meet both requirements on one surface. Here, using Pt(111) over-layers stressed and modified by Pt-TM (TM = Fe, Co, Ni, V, Cu, Ag, and Pd) intermetallics as examples, we theoretically identified ten promising catalysts by synergistically tailoring the skin thickness and substrate chemical ordering to simultaneously achieve weak adsorption and strong cohesion. More specifically, compared with Pt(111), all candidates exhibit 10-fold enhanced activity, half of which show improved durability, such as mono-layer skin on L12-Pt3Co or Pt3Fe, double-layer Pt on L13-Pt3Ni or Pt3Cu, and triple-layer skin on L11-PtCu, while double- or triple-layer skin on L10-PtCo or PtNi and double-layer skin on L12-PtFe3 show slightly poor durability. Although L10 and L12 based nanocrystals have been demonstrated extensively as outstanding catalysts, L11 and L13 ones hold great application potential. The coexistence of high activity and durability on the same surface is because of the different responses of surface adsorption and cohesion properties to the strain effects and ligand effects. When intermetallic-core@Pt-shell nanocrystals are constructed using this slab model, the necessity of protecting or eliminating low-coordinated Pt and the possibility of maximizing Pt(111) facets and core ordering by morphology engineering were highlighted. The current discovery provides a new paradigm toward the rational design of promising cathodic catalysts.

5.
Phys Chem Chem Phys ; 23(14): 8653-8660, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33876026

RESUMEN

The selective hydrogenation of acetylene was studied on the ordered Cu-Pd intermetallic compounds (L10-type CuPd, L12-type Cu3Pd, and L12-type CuPd3) and Pd-modified Cu(111) surfaces through first-principles calculations. The catalytic selectivity and activity of Cu-Pd alloy catalysts are closely related to the crystal structure and composition of Cu-Pd intermetallic compounds and the size of Pd ensembles of Cu-based dilute alloy surface for the selective hydrogenation of acetylene to ethylene. Significantly, we found that the ordered Cu-Pd alloy surface containing isolated Pd atoms (i.e., L12-type Cu3Pd(111) surface) is highly efficient for the selective hydrogenation reaction of C2H2 + H2→ C2H4. The contiguous Pd atom ensembles (Pd dimer and trimer) are catalytically active towards C2H2 + H → C2H3 and C2H3 + H → C2H4 reactions than the single Pd atom on a Pd-decorated Cu(111) surface. However, the small Pd ensembles on Cu(111) present a low chemical activity for H2 dissociation compared with the ordered Cu-Pd intermetallic compounds. Our theoretical results provide a strategy of crystal phase and composition control for enhancing the selectivity and activity of Cu-Pd catalysts towards acetylene selective hydrogenation.

6.
J Am Chem Soc ; 142(15): 6983-6990, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32208692

RESUMEN

First-principles density functional theory calculations are first used to study possible reaction mechanisms of molybdenum carbide (Mo2C) as cathode catalysts in Li-CO2 batteries. By systematically investigating the Gibbs free energy changes of different intermediates during lithium oxalate (Li2C2O4) and lithium carbonate (Li2CO3) nucleations, it is theoretically demonstrated that Li2C2O4 could be stabilized as the final discharge product, preventing the further formation of Li2CO3. The surface charge distributions of Li2C2O4 adsorbing onto catalytic surfaces are studied by using Bader charge analysis, given that electron transfers are found between Li2C2O4 and Mo2C surfaces. The catalytic activities of catalysts are intensively evaluated toward the discharge and charge processes by calculating the electrochemical free energy diagrams to identify the overpotentials. Our studies promote the understanding of electrochemical processes and shed more light on the design and optimization of cathode catalysts for Li-CO2 batteries.

7.
Phys Chem Chem Phys ; 21(37): 21049-21056, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31528914

RESUMEN

In this work, we studied the adsorption and catalytic dehydrogenation of formic acid (HCOOH) on Pt(111) surface using different van der Waals inclusive density functional theory (DFT) methods. Our results indicate that the PBE + dDsC method has the best overall performance on the description of adsorption and catalytic selectivity. We found the improved van der Waals (vdW) corrected methods (PBE + D3, PBE + TS, PBE + TS-SCS, PBE + TS/IH, PBE + MBD@rsSCS, and PBE + dDsC) and optimized vdW functionals (optPBE-vdW, optB88-vdW, and optB86b-vdW) perform well to estimate the adsorption energies of HCOOH and HCOO molecules on Pt(111) surface. The vdW-inclusive DFT approaches as well as the conventional PBE functional predict a higher activation barrier for C-H breaking by comparison of O-H breaking in the selective dehydrogenation of formic acid. However, the optimized vdW functionals evidently underestimate the rate constant of C-H breaking reaction, and then fail to describe the catalytic selectivity of the HCOOH's dehydrogenation. Both PBE + dDsC and PBE predict a similar temperature dependence of the ratio of reaction rate constants for O-H breaking versus C-H breaking, though PBE functional underestimate the adsorption energies.

8.
Phys Rev Lett ; 118(3): 036801, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157347

RESUMEN

Intermolecular interactions can induce energy shifts and coupling of molecular vibrations. However, the detection of intermolecular coupled vibrations has not been reported at the single molecule level. Here we detected an intermolecular coupled vibration between two CO molecules, one on the surface and another on the tip within the gap of a subkelvin scanning tunneling microscope, and analyzed the results by density functional calculations. We attribute the evolution of the energy and intensity of this coupled vibration as a function of tip-sample distance to the tilting and orbital alignment of the two CO molecules.

9.
Phys Rev Lett ; 114(20): 206101, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26047242

RESUMEN

A hydrogen molecule can diffuse freely on the surface and be trapped above an adsorbed molecule within the junction of a scanning tunneling microscope. The trapped dihydrogen exhibits the properties of a free rotor. Here we show that the intermolecular interaction between dihydrogen and Mg-porphyrin (MgP) can be visualized by imaging j=0 to 2 rotational excitation of dihydrogen. The interaction leads to a weakened H-H bond and modest electron donation from the dihydrogen to the lowest unoccupied molecular orbital of MgP, a process similarly observed for the interaction between dihydrogen and an adsorbed Au atom.


Asunto(s)
Hidrógeno/química , Magnesio/química , Modelos Químicos , Porfirinas/química , Adsorción , Óxido de Aluminio/química , Microscopía de Túnel de Rastreo/métodos
10.
ACS Omega ; 7(5): 4492-4500, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35155941

RESUMEN

The synergistic effects of strain and crystal phase on the reaction activity of nitrogen molecule dissociation have been studied using density functional theory calculations on Ru(0001) surfaces with multilayered hexagonal close-packed structures. The phase transformation from hexagonal close-packed phase (2H) to face-centered cubic (3C) phase or unconventional phases (4H, DHCP, 6H1, and 6H2) would occur under the uniaxial tensile strain loaded along the c axis. The close-packed surfaces of unconventional crystal phases show an enhanced chemical reactivity for N adsorption due to the upshifted d-band center of Ru. However, the N2 adsorption energy is almost independent of the applied strain and crystal phase. The optimized catalytic activity of Ru(0001) surfaces with the unconventional phases is found for the N2 dissociation through breaking the scaling relationships between the reaction barrier and reaction energy. Our results indicate that the strain-induced phase transformation is an effective method to improve the catalytic activity of noble metal catalysts toward the N2 dissociation reaction.

11.
Adv Mater ; 31(3): e1804439, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30474199

RESUMEN

The rapid development of wearable electronics requires a revolution of power accessories regarding flexibility and energy density. The Li-CO2 battery was recently proposed as a novel and promising candidate for next-generation energy-storage systems. However, the current Li-CO2 batteries usually suffer from the difficulties of poor stability, low energy efficiency, and leakage of liquid electrolyte, and few flexible Li-CO2 batteries for wearable electronics have been reported so far. Herein, a quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency, by employing ultrafine Mo2 C nanoparticles anchored on a carbon nanotube (CNT) cloth freestanding hybrid film as the cathode, is demonstrated. Due to the synergistic effects of the CNT substrate and Mo2 C catalyst, it achieves a low charge potential below 3.4 V, a high energy efficiency of ≈80%, and can be reversibly discharged and charged for 40 cycles. Experimental results and theoretical simulation show that the intermediate discharge product Li2 C2 O4 stabilized by Mo2 C via coordinative electrons transfer should be responsible for the reduction of overpotential. The as-fabricated quasi-solid-state flexible fiber-shaped Li-CO2 battery can also keep working normally even under various deformation conditions, giving it great potential of becoming an advanced energy accessory for wearable electronics.


Asunto(s)
Dióxido de Carbono , Suministros de Energía Eléctrica , Litio , Dióxido de Carbono/química , Simulación por Computador , Elasticidad , Electrones , Diseño de Equipo , Litio/química , Nanopartículas/química , Dispositivos Electrónicos Vestibles
12.
ChemSusChem ; 12(17): 4046-4053, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31257701

RESUMEN

Metallic-state 2D SnS2 nanosheets with expanded lattice spacing and a defect-rich structure were synthesized by the intercalation of Ni into the van der Waals gap of SnS2 . The expanded lattice spacing efficiently enhanced the electrochemical performance of the SnS2 for sodium-ion batteries owing to the change electron state density and energy band structure. In operando synchrotron XRD and theoretical calculations were used to gain insight into the influence of foreign metal-ion doping and its location. The optimized architecture obtained by in situ uniform growth of nanosheets on carbon fibers significantly enhanced the electrochemical performance. The inherent advantages of this architecture are shorter paths for ion insertion and extraction, larger contact area for more sodium diffusion pathways, and superior electrolyte penetration. Benefiting from the Ni intercalated SnS2 bilayer, the internal adjustment of the electronic state and the enlarged interlayer spacing significantly enhanced the electron transport kinetics, which can be explained by the metallic-state properties. The integrated electrode exhibited an initial high reversible capacity of 795 mAh g-1 at 0.1 A g-1 , with a stable capacity retention of 666 mAh g-1 after 100 cycles. Good rate capability was also exhibited with specific capacities of 691, 564, 437 mAh g-1 at current densities of 200, 500, and 1000 mA g-1 , respectively.

13.
Nat Commun ; 9(1): 2322, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899408

RESUMEN

The carbon-carbon triple bond (-C≡C-) is an elementary constituent for the construction of conjugated molecular wires and carbon allotropes such as carbyne and graphyne. Here we describe a general approach to in situ synthesize -C≡C- bond on Cu(111) surface via homo-coupling of the trichloromethyl groups, enabling the fabrication of individual and arrays of poly(p-phenylene ethynylene) molecular wires. Scanning tunneling spectroscopy reveals a delocalized electronic state extending along these molecular wires, whose structure is unraveled by atomically resolved images of scanning tunneling microscopy and noncontact atomic force microscopy. Combined with density functional theory calculations, we identify the intermediates formed in the sequential dechlorination process, including surface-bound benzyl, carbene, and carbyne radicals. Our method overcomes the limitation of previous on-surface syntheses of -C≡C- incorporated systems, which require the precursors containing alkyne group; it therefore allows for a more flexible design and fabrication of molecular architectures with tailored properties.

14.
J Phys Chem Lett ; 7(12): 2228-33, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27232051

RESUMEN

The combination of a sub-Kelvin scanning tunneling microscope and density functional calculations incorporating van der Waals (vdW) corrections has been used successfully to probe the adsorption structure and low-frequency vibrational modes of single benzene molecules on Ag(110). The inclusion of optimized vdW functionals and improved C6-based vdW dispersion schemes in density functional theory is crucial for obtaining the correct adsorption structure and low-energy vibrational modes. These results demonstrate the emerging capability to quantitatively probe the van der Waals interactions between a physisorbed molecule and an inert substrate.

15.
J Chem Phys ; 128(6): 064706, 2008 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-18282066

RESUMEN

Systematic density functional studies revealed that PtAu(111) significantly alters the reaction kinetics of methanol oxidation from that on Pt(111). PtAu(111) facilitates the reaction path that starts from cleavage of the OH bond. Furthermore, it prevents CH(2)O from immediate decomposition as on the clean Pt(111) surface. This indicates that proper arrangement of Au and Pt sites offers great opportunities for non-CO(ad) paths for high H productivity in fuel cells.


Asunto(s)
Aleaciones/química , Oro/química , Metanol/química , Platino (Metal)/química , Cinética , Modelos Químicos , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA