Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34730826

RESUMEN

Colonization of land from marine environments was a major transition for biological life on Earth, and intertidal adaptation was a key evolutionary event in the transition from marine- to land-based lifestyles. Multicellular intertidal red algae exhibit the earliest, systematic, and successful adaptation to intertidal environments, with Porphyra sensu lato (Bangiales, Rhodophyta) being a typical example. Here, a chromosome-level 49.67 Mb genome for Neoporphyra haitanensis comprising 9,496 gene loci is described based on metagenome-Hi-C-assisted whole-genome assembly, which allowed the isolation of epiphytic bacterial genome sequences from a seaweed genome for the first time. The compact, function-rich N. haitanensis genome revealed that ancestral lineages of red algae share common horizontal gene transfer events and close relationships with epiphytic bacterial populations. Specifically, the ancestor of N. haitanensis obtained unique lipoxygenase family genes from bacteria for complex chemical defense, carbonic anhydrases for survival in shell-borne conchocelis lifestyle stages, and numerous genes involved in stress tolerance. Combined proteomic, transcriptomic, and metabolomic analyses revealed complex regulation of rapid responses to intertidal dehydration/rehydration cycling within N. haitanensis. These adaptations include rapid regulation of its photosynthetic system, a readily available capacity to utilize ribosomal stores, increased methylation activity to rapidly synthesize proteins, and a strong anti-oxidation system to dissipate excess redox energy upon exposure to air. These novel insights into the unique adaptations of red algae to intertidal lifestyles inform our understanding of adaptations to intertidal ecosystems and the unique evolutionary steps required for intertidal colonization by biological life.


Asunto(s)
Proteómica , Rhodophyta , Aclimatación/genética , Adaptación Fisiológica/genética , Ecosistema , Rhodophyta/genética
2.
Plant J ; 104(4): 932-949, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32808386

RESUMEN

Brassica napus is currently cultivated as an important ornamental crop in China. Flower color has attracted much attention in rapeseed genetics and breeding. Here, we characterize an orange-flowered mutant of B. napus that exhibits an altered carotenoid profile in its petals. As revealed by map-based cloning, the change in color from yellow to orange is attributed to the loss of BnaC09.ZEP (zeaxanthin epoxidase) and a 1695-bp deletion in BnaA09.ZEP. HPLC analysis, genetic complementation and CRISPR/Cas9 experiments demonstrated that BnaA09.ZEP and BnaC09.ZEP have similar functions, and the abolishment of both genes led to a substantial increase in lutein content and a sharp decline in violaxanthin content in petals but not leaves. BnaA09.ZEP and BnaC09.ZEP are predominantly expressed in floral tissues, whereas their homologs, BnaA07.ZEP and BnaC07.ZEP, mainly function in leaves, indicating redundancy and tissue-specific diversification of BnaZEP function. Transcriptome analysis in petals revealed differences in the expression of carotenoid and flavonoid biosynthesis-related genes between the mutant and its complementary lines. Flavonoid profiles in the petals of complementary lines were greatly altered compared to the mutant, indicating potential cross-talk between the regulatory networks underlying the carotenoid and flavonoid pathways. Additionally, our results indicate that there is functional compensation by BnaA07.ZEP and BnaC07.ZEP in the absence of BnaA09.ZEP and BnaC09.ZEP. Cloning and characterization of BnaZEPs provide insights into the molecular mechanisms underlying flower pigmentation in B. napus and would facilitate breeding of B. napus varieties with higher ornamental value.


Asunto(s)
Brassica napus/genética , Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/metabolismo , Brassica napus/enzimología , Brassica napus/fisiología , Sistemas CRISPR-Cas , Flavonoides/metabolismo , Flores/enzimología , Flores/genética , Flores/fisiología , Silenciador del Gen , Luteína/metabolismo , Oxidorreductasas/genética , Pigmentación/genética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xantófilas/metabolismo
3.
Mol Genet Genomics ; 291(4): 1523-34, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27003438

RESUMEN

Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica.


Asunto(s)
Antocianinas/biosíntesis , Brassica napus/genética , Mapeo Cromosómico/métodos , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Brassica napus/metabolismo , Cromosomas de las Plantas/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA