Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 19(12): e2206528, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36587974

RESUMEN

Gel-based triboelectric nanogenerator (TENG) has demonstrated promising potentials in stretchable electronics owing to gel electrodes' intrinsic softness, stretchability, and conductivity. However, delamination between gel and elastomer layers in deformations remains a considerable challenge for gel-based TENG, which most often induces structure failure. Herein, gels are regarded as adhesives and further effectively enhances interfacial bonding strength by a rough interface in adhesives' view, which exploits gels' liquid-to-solid transformation. This method just needs surface roughness of elastomer, which avoids chemical modification. Moreover, this method is effective to both organogel with good stickiness and hydrogel with weak stickiness, demonstrating wide applicability to different gels. Owing to the tough gel/elastomer interfacial bonding, TENG-Rough largely solves delamination problem under various deformations and the corresponding output performances of TENG-Rough are also maintained, implying a robust stretchable TENG device for reliable energy harvesting. This work demonstrates a general and facile method to enhance interfacial bonding in an adhesives' way, which provides a view for addressing delamination problem in gel-based TENGs and other kinds of gel-based devices.

2.
Chem Commun (Camb) ; 60(15): 2050-2053, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38288479

RESUMEN

We present a novel approach to fabricate endogenous slippery lubricant-infused porous surfaces (eSLIPS) at room temperature using an evaporation-induced phase separation process. The ternary coating system, comprising ethylene-propylene copolymer, caprylyl methicone, and n-hexane, forms a porous structure in situ infiltrated with lubricant, resulting in surfaces with remarkable anti-fouling and anti-icing properties.

3.
ACS Appl Mater Interfaces ; 16(20): 26787-26796, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739459

RESUMEN

Stretchable materials are the foundation of dielectric actuators (DEAs) for artificial muscle. However, the inadequate dielectric constant of stretchable materials has always greatly limited the performance of artificial muscle. Recently, soft fillers have been proposed to improve the dielectric property and preserve the stretchability for softness, aiming to avoid the stiffening effect of traditional rigid fillers. As composites, an amount of interfacial region is generated, which remarkably affects composites' performance from dielectrics to mechanics. Herein, we demonstrate that the size effect, interfacial binding, and compatibility have a great impact on soft filler doped composites. Particularly, according to the liquid characteristics of soft fillers, we explore an interfacial modification method using surfactants. Composite breakdown strength is thus enhanced 2.2-fold from that in the control group due to the reduction of mismatch between fillers and matrix. Moreover, surfactants alleviate the well-known stiffening effect in small fillers. The area strain of the composites reaches 10.3 ± 0.4% at a low electric field of 7 MV/m, and a soft micropump is successfully assembled. These findings demonstrate a unique and combined interfacial influence of soft filler doped elastomer, which promotes the advancements of the dielectric elastomer artificial muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA