Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 22(3): 979-988, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35061402

RESUMEN

Antisolvent-assisted spin coating has been widely used for fabricating metal halide perovskite films with smooth and compact morphology. However, localized nanoscale inhomogeneities exist in these films owing to rapid crystallization, undermining their overall optoelectronic performance. Here, we show that by relaxing the requirement for film smoothness, outstanding film quality can be obtained simply through a post-annealing grain growth process without passivation agents. The morphological changes, driven by a vaporized methylammonium chloride (MACl)-dimethylformamide (DMF) solution, lead to comprehensive defect elimination. Our nanoscale characterization visualizes the local defective clusters in the as-deposited film and their elimination following treatment, which couples with the observation of emissive grain boundaries and excellent inter- and intragrain optoelectronic uniformity in the polycrystalline film. Overcoming these performance-limiting inhomogeneities results in the enhancement of the photoresponse to low-light (<0.1 mW cm-2) illumination by up to 40-fold, yielding high-performance photodiodes with superior low-light detection.

2.
Adv Sci (Weinh) ; : e2401783, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741280

RESUMEN

Reliable fabrication of large-area perovskite films with antisolvent-free printing techniques requires high-volatility solvents, such as 2-methoxyethanol (2ME), to formulate precursor inks. However, the fabrication of high-quality cesium-formamidinium (Cs-FA) perovskites has been hampered using volatile solvents due to their poor coordination with the perovskite precursors. Here, this issue is resolved by re-formulating a 2ME-based Cs0.05FA0.95PbI3 ink using pre-synthesized single crystals as the precursor instead of the conventional mixture of raw powders. The key to obtaining high-quality Cs-FA films lies in the removal of colloidal particles from the ink and hence the suppression of colloid-induced heterogeneous nucleation, which kinetically facilitates the growth of as-formed crystals toward larger grains and improved film crystallinity. Employing the precursor-engineered volatile ink in the vacuum-free, fully printing processing of solar cells (with carbon electrode), a power conversion efficiency (PCE) of 19.3%, a T80 (80% of initial PCE) of 1000 h in ISOS-L-2I (85 °C/1 Sun) aging test and a substantially reduced bill of materials are obtained. The reliable coating methodology ultimately enables the fabrication of carbon-electrode mini solar modules with a stabilized PCE of 16.2% (average 15.6%) representing the record value among the fully printed counterparts and a key milestone toward meeting the objectives for a scalable photovoltaic technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA