Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(18): 5562-5569, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38682815

RESUMEN

Transition metal trichalcogenides (TMTCs) offer remarkable opportunities for tuning electronic states through modifications in chemical composition, temperature, and pressure. Despite considerable interest in TMTCs, there remain significant knowledge gaps concerning the evolution of their electronic properties under compression. In this study, we employ experimental and theoretical approaches to comprehensively explore the high-pressure behavior of the electronic properties of TiS3, a quasi-one-dimensional (Q1D) semiconductor, across various temperature ranges. Through high-pressure electrical resistance and magnetic measurements at elevated pressures, we uncover a distinctive sequence of phase transitions within TiS3, encompassing a transformation from an insulating state at ambient pressure to the emergence of an incipient superconducting state above 70 GPa. Our findings provide compelling evidence that superconductivity at low temperatures of ∼2.9 K is a fundamental characteristic of TiS3, shedding new light on the intriguing high-pressure electronic properties of TiS3 and underscoring the broader implications of our discoveries for TMTCs in general.

2.
Mol Biol Rep ; 51(1): 506, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622341

RESUMEN

BACKGROUND: Atrial Fibrillation (AF), a prevalent arrhythmic condition, is intricately associated with atrial fibrosis, a major pathological contributor. Central to the development of atrial fibrosis is myocardial inflammation. This study focuses on Atrial Natriuretic Peptide (ANP) and its role in mitigating atrial fibrosis, aiming to elucidate the specific mechanisms by which ANP exerts its effects, with an emphasis on fibroblast dynamics. METHODS AND RESULTS: The study involved forty Sprague-Dawley rats, divided into four groups: control, Angiotensin II (Ang II), Ang II + ANP, and ANP only. The administration of 1 µg/kg/min Ang II was given to Ang II and Ang II + ANP groups, while both Ang II + ANP and ANP groups received 0.1 µg/kg/min ANP intravenously for a duration of 14 days. Cardiac fibroblasts were used for in vitro validation of the proposed mechanisms. The study observed that rats in the Ang II and Ang II + ANP groups showed an increase in blood pressure and a decrease in body weight, more pronounced in the Ang II group. Diastolic dysfunction, a characteristic of the Ang II group, was alleviated by ANP. Additionally, ANP significantly reduced Ang II-induced atrial fibrosis, myofibroblast proliferation, collagen overexpression, macrophage infiltration, and the elevated expression of Interleukin 6 (IL-6) and Tenascin-C (TN-C). Transcriptomic sequencing indicated enhanced PI3K/Akt signaling in the Ang II group. Furthermore, in vitro studies showed that ANP, along with the PI3K inhibitor LY294002, effectively reduced PI3K/Akt pathway activation and the expression of TN-C, collagen-I, and collagen-III, which were induced by Ang II. CONCLUSIONS: The study demonstrates ANP's potential in inhibiting myocardial inflammation and reducing atrial fibrosis. Notably, ANP's effect in countering atrial fibrosis seems to be mediated through the suppression of the Ang II-induced PI3K/Akt-Tenascin-C signaling pathway. These insights enhance our understanding of AF pathogenesis and position ANP as a potential therapeutic agent for treating atrial fibrosis.


Asunto(s)
Fibrilación Atrial , Factor Natriurético Atrial , Ratas , Animales , Ratas Sprague-Dawley , Factor Natriurético Atrial/farmacología , Factor Natriurético Atrial/metabolismo , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Tenascina , Fibrilación Atrial/tratamiento farmacológico , Angiotensina II/farmacología , Inflamación/tratamiento farmacológico , Colágeno , Fibrosis
3.
Nano Lett ; 23(22): 10282-10289, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37906179

RESUMEN

Quasiparticles consisting of correlated electron(s) and hole(s), such as excitons and trions, play important roles in the optical phenomena of van der Waals semiconductors and serve as unique platforms for studies of many-body physics. Herein, we report a gate-tunable exciton-to-trion transition in pressurized monolayer MoSe2, in which the electronic band structures are modulated continuously within a diamond anvil cell. The emission energies of both the exciton and trion undergo large blueshifts over 90 meV with increasing pressure. Surprisingly, the trion binding energy remains constant at 30 meV, regardless of the applied pressure. Combining ab initio density functional theory calculations and quantum Monte Carlo simulations, we find that the remarkable robustness of the trion binding energy originates from the spatially diffused nature of the trion wave function and the weak correlation between its constituent electron-hole pairs. Our findings shed light on the optical properties of correlated excitonic quasiparticles in low-dimensional materials.

4.
Nat Mater ; 21(7): 773-778, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35710630

RESUMEN

Complex correlated states emerging from many-body interactions between quasiparticles (electrons, excitons and phonons) are at the core of condensed matter physics and material science. In low-dimensional materials, quantum confinement affects the electronic, and subsequently, optical properties for these correlated states. Here, by combining photoluminescence, optical reflection measurements and ab initio theoretical calculations, we demonstrate an unconventional excitonic state and its bound phonon sideband in layered silicon diphosphide (SiP2), where the bound electron-hole pair is composed of electrons confined within one-dimensional phosphorus-phosphorus chains and holes extended in two-dimensional SiP2 layers. The excitonic state and emergent phonon sideband show linear dichroism and large energy redshifts with increasing temperature. Our ab initio many-body calculations confirm that the observed phonon sideband results from the correlated interaction between excitons and optical phonons. With these results, we propose layered SiP2 as a platform for the study of excitonic physics and many-particle effects.

5.
Mol Biol Rep ; 50(12): 9757-9767, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37676431

RESUMEN

BACKGROUND: Artial fibrosis has been recognized as a typical pathological change in atrial fibrillation. Although present evidence suggests that microRNA-499-5p (miR-499-5p) plays an important role in the development of atrial fibrosis, the specific mechanism is not fully understood. Therefore, this study attempted to assess the influence of miR-499-5p on atrial fibroblasts and explore the potential molecular mechanism. METHODS: Atrial fibroblasts from sprague dawley rat were respectively transfected with miR-499-5p mimic, miR-499-5p negative control and miR-499-5p inhibitor, atrial fibroblasts without any treatment were also established. Cell counting kit-8 assay and transwell assay were used to detect the proliferation and migration of atrial fibroblasts in each group. Expressions of miR-499-5p, TGF-ß1, smad2, α-SMA, collagen-I and TGFß-R1 in mRNA and protein level were subsequently detected via quantitative real-time polymerase chain reaction and western blot. Furthermore, the prediction of the binding sites of miR-499-5p and TGFß-R1 was performed via the bioinformatics online software TargetScan and verified by dual luciferase reporter. RESULTS: By utilizing miR-499-5p-transfected atrial fibroblasts model, expression of miR-499-5p in the miR-499-5p mimic group was upregulated, while it was downregulated in the miR-499-5p inhibitors group. Upregulated miR-499-5p expression led to to a significant decrease in the proliferative and migratory ability of cultured atrial fibroblasts, while downregulated miR-499-5p expression led to a significant increase in the proliferative and migratory ability of cultured atrial fibroblasts. Additionally, upregulated miR-499-5p expression made a significant rise in TGF-ß1-induced mRNA and protein expression of TGF-ß1, TGFß-R1, smad2, α-SMA and collagen-I in atrial fibroblasts. Furthermore, results from the dual luciferase reporter conformed that miR-499-5p may repress TGFß-R1 by binding the 3'UTR of TGFß-R1 directly. CONCLUSIONS: miR-499-5p is able to inhibit the activation of transforming growth factor ß-induced Smad2 signaling and eventually suppressed the proliferation, migration and invasion of atrial fibroblasts and collagen synthesis by targeting TGFß-R1.


Asunto(s)
Fibrilación Atrial , MicroARNs , Receptores de Factores de Crecimiento Transformadores beta , Animales , Ratas , Fibrilación Atrial/genética , Fibrilación Atrial/patología , Proliferación Celular/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibrosis , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ratas Sprague-Dawley , ARN Mensajero/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteína Smad2/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
6.
BMC Med Imaging ; 23(1): 4, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611159

RESUMEN

BACKGROUND: To establish and verify a radiomics nomogram for differentiating isolated micronodular adrenal hyperplasia (iMAD) from lipid-poor adenoma (LPA) based on computed tomography (CT)-extracted radiomic features. METHODS: A total of 148 patients with iMAD or LPA were divided into three cohorts: a training cohort (n = 72; 37 iMAD and 35 LPA), a validation cohort (n = 36; 22 iMAD and 14 LPA), and an external validation cohort (n = 40; 20 iMAD and 20 LPA). Radiomics features were extracted from contrast-enhanced and non-contrast CT images. The least absolute shrinkage and selection operator (LASSO) method was applied to develop a triphasic radiomics model and unenhanced radiomics model using reproducible radiomics features. A clinical model was constructed using certain laboratory variables and CT findings. Radiomics nomogram was established by selected radiomics signature and clinical factors. Nomogram performance was assessed by calibration curve, the areas under receiver operating characteristic curves (AUC), and decision curve analysis (DCA). RESULTS: Eleven and eight extracted features were finally selected to construct an unenhanced radiomics model and a triphasic radiomics model, respectively. There was no significant difference in AUC between the two models in the external validation cohort (0.838 vs. 0.843, p = 0.949). The radiomics nomogram inclusive of the unenhanced model, maximum diameter, and aldosterone showed the AUC of 0.951, 0.938, and 0.893 for the training, validation, and external validation cohorts, respectively. The nomogram showed good calibration, and the DCA demonstrated the superiority of the nomogram compared with the clinical factors model alone in terms of clinical usefulness. CONCLUSIONS: A radiomics nomogram based on unenhanced CT images and clinical variables showed favorable performance for distinguishing iMAD from LPA. In addition, an efficient unenhanced model can help avoid extra contrast-enhanced scanning and radiation risk.


Asunto(s)
Adenoma , Nomogramas , Humanos , Hiperplasia , Adenoma/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Lípidos , Estudios Retrospectivos
7.
Phys Rev Lett ; 123(4): 047203, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31491273

RESUMEN

The recent discovery of intrinsic ferromagnetic order in the atomically thin van der Waals crystal CrXTe_{3} (X=Si, Ge) stimulates intensive studies on the nature of low-dimensional magnetism because the presence of long-range magnetic order in two-dimensional systems with continuous symmetry is strictly prohibited by thermal fluctuations. By combining advanced many-body calculations with angle-resolved photoemission spectroscopy we investigate CrSiTe_{3} single crystals and unveil the pivotal role played by the strong electronic correlations at both high- and low-temperature regimes. Above the Curie temperature (T_{c}), Coulomb repulsion (U) drives the system into a charge transfer insulating phase. In contrast, below T_{c} the crystal field arranges the Cr-3d orbitals such that the ferromagnetic superexchange profits, giving rise to the bulk ferromagnetic ground state with which the electronic correlations compete. The excellent agreement between theory and experiment establishes CrSiTe_{3} as a prototype low-dimensional crystal with the cooperation and interplay of electronic correlation and ferromagnetism.

9.
Nano Lett ; 18(4): 2387-2392, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29580055

RESUMEN

Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 1014 cm-2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, we demonstrate an all solid-state EDL device based on a solid superionic conductor LaF3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF3 EDL transistors (EDLTs), we observe the metal-insulator transition in MoS2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS2 transistors. This result shows the powerful gating capability of LaF3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.

10.
Nano Lett ; 18(2): 1410-1415, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29385803

RESUMEN

Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe2, a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature Tc ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field Bc2, (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane Bc2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.

12.
Brain Behav Immun ; 73: 222-234, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29751053

RESUMEN

We previously reported that l-Cysteine, an H2S donor, significantly alleviated brain injury after hypoxia-ischemic (HI) injury in neonatal mice. However, the mechanisms underlying this neuroprotective effect of l-Cysteine against HI insult remain unknown. In the present study, we tested the hypothesis that the protective effects of l-Cysteine are associated with glial responses and autophagy, and l-Cysteine attenuates synaptic injury as well as behavioral deficits resulting from HI. Consistent with our previous findings, we found that treatment with l-Cysteine after HI reduced early brain injury, improved behavioral deficits and synaptic damage, effects which were associated with an up-regulation of synaptophysin and postsynaptic density protein 95 expression in the lesioned cortex. l-Cysteine attenuated the accumulation of CD11b+/CD45high cells, activation of microglia and astrocytes and diminished HI-induced increases in reactive oxygen species and malondialdehyde within the lesioned cortex. In addition, l-Cysteine increased microtubule associated protein 1 light chain 3-II and Beclin1 expression, decreased p62 expression and phosphor-mammalian target of rapamycin and phosphor-signal transducer and activator of transcription 3. Further support for a critical role of l-Cysteine was revealed from results demonstrating that treatment with an inhibitor of the H2S-producing enzyme, amino-oxyacetic acid, reversed the beneficial effects of l-Cysteine described above. These results demonstrate that l-Cysteine effectively alleviates HI injury and improves behavioral outcomes by inhibiting reactive glial responses and synaptic damage and an accompanying triggering of autophagic flux. Accordingly, l-Cysteine may provide a new a therapeutic approach for the treatment of HI via the formation of H2S.


Asunto(s)
Cisteína/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Ácido Aminooxiacético/farmacología , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Autofagia/efectos de los fármacos , Cisteína/metabolismo , Sulfuro de Hidrógeno , Hipoxia , Ratones , Microglía/metabolismo , Neuroglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Vesículas Sinápticas/efectos de los fármacos , Sinaptofisina/análisis
13.
Appl Opt ; 57(8): 1883-1886, 2018 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-29521970

RESUMEN

A birefringent single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance is proposed to realize high sensitivity, which is easy to implement, in that only gold is deposited externally. The birefringent nature of the structure provides the sensor with high sensitivity. The results show that the biosensor can obtain the wavelength sensitivity of 15180 nm/refractive index unit (RIU) and high linearity with the analyte RI range of 1.40-1.43, corresponding to the resolution of 5.6818×10-6 RIU. Owing to the high sensitivity and simple structure, the proposed sensor can find important applications in biochemical and biological analyte detection.

14.
Appl Opt ; 57(22): 6383-6387, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30117867

RESUMEN

A novel photonic crystal fiber (PCF) with an elliptical tellurite core is proposed to realize high birefringence and high nonlinearity simultaneously as well as low confinement loss at the wavelength of 1.55 µm. The guiding properties, such as the birefringence, the nonlinearity, and the confinement loss, have been investigated by using the full vectorial finite element method. The results show that the birefringence and the nonlinear coefficient can be up to 7.57×10-2 and 188.39 W-1 Km-1, respectively, and the confinement loss can be only 10-9 dB/m. The proposed PCF can find potential applications in optical fiber sensing, polarization-maintaining transmission, and super-continuum generation.

15.
Nano Lett ; 16(10): 6130-6136, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27605459

RESUMEN

Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. In order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. Here, by utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO3/SrTiO3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson-Schrödinger sub-band model. In particular, the large nonlinear dielectric response of SrTiO3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. Our study provides a broad framework for understanding various reported phenomena at the LaAlO3/SrTiO3 interface.

16.
Nano Lett ; 16(1): 488-96, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26599063

RESUMEN

Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption.


Asunto(s)
Calcógenos/química , Líquidos Iónicos/química , Nanoestructuras/química , Óptica y Fotónica/métodos , Bismuto/química , Luz , Nanotecnología , Selenio/química
17.
Nano Lett ; 16(8): 4738-45, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27357620

RESUMEN

Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.

18.
Acc Chem Res ; 48(1): 81-90, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25553585

RESUMEN

Electron occupation of orbitals in two-dimensional (2D) layered materials controls the magnitude and anisotropy of the interatomic electron transfer and exerts a key influence on the chemical bonding modes of 2D layered lattices. Therefore, their orbital occupations are believed to be responsible for massive variations of the physical and chemical properties from electrocatalysis and energy storage, to charge density waves, superconductivity, spin-orbit coupling, and valleytronics. Especially in nanoscale structures such as nanoribbons, nanoplates, and nanoflakes, 2D layered materials provide opportunities to exploit new quantum phenomena. In this Account, we report our recent progress in the rational design and chemical, electrochemical, and electrical modulations of the physical and chemical properties of layered nanomaterials via modification of the electron occupation in their electronic structures. Here, we start with the growth and fabrication of a group of layered chalcogenides with varied orbital occupation (from 4d/5d electron configuration to 5p/6p electron configuration). The growth techniques include bottom-up methods, such as vapor-liquid-solid growth and vapor-solid growth, and top-down methods, such as mechanical exfoliation with tape and AFM tip scanning. Next, we demonstrate the experimental strategies for the tuning of the chemical potential (orbital occupation tuned with electron filling) and the resulting modulation of the electronic states of layered materials, such as electric-double-layer gating, electrochemical intercalation, and chemical intercalation with molecule and zerovalence metal species. Since the properties of layered chalcogenides are normally dominated by the specific band structure around which the chemical potential is sitting, their desired electronic states and properties can be modulated in a large range, showing unique phenomena including quantum electronic transport and extraordinary optical transmittance. As the most important part of this Account, we further demonstrate some representative examples for the tuning of catalytic, optical, electronic, and spintronic properties of 2D layered chalcogenides, where one can see not only edge-state induced enhancement of catalysis, quantum Aharonov-Bohm interference of the topological surface states, intercalation modulated extraordinary transmittance, and surface plasmonics but also external gating induced superconductivity and spin-coupled valley photocurrent. Since our findings reflect the critical influences of the electron filling of orbital occupation to the properties in 2D layered chalcogenides, we thus last highlight the importance and the prospective of orbital occupation in 2D layered materials for further exploring potential functionalized applications.

19.
Chem Soc Rev ; 44(9): 2664-80, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25474482

RESUMEN

The development of two-dimensional (2D) materials has been experiencing a renaissance since the adventure of graphene. Layered transition metal dichalcogenides (TMDs) are now playing increasingly important roles in both fundamental studies and technological applications due to their wide range of material properties from semiconductors, metals to superconductors. However, a material with fixed properties may not exhibit versatile applications. Due to the unique crystal structures, the physical and chemical properties of 2D TMDs can be effectively tuned through different strategies such as reducing dimensions, intercalation, heterostructure, alloying, and gating. With the flexible tuning of properties 2D TMDs become attractive candidates for a variety of applications including electronics, optoelectronics, catalysis, and energy.

20.
Nano Lett ; 15(7): 4730-6, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26061780

RESUMEN

Electrostatic modification of functional materials by electrolytic gating has demonstrated a remarkably wide range of density modulation, a condition crucial for developing novel electronic phases in systems ranging from complex oxides to layered chalcogenides. Yet little is known microscopically when carriers are modulated in electrolyte-gated electric double-layer transistors (EDLTs) due to the technical challenge of imaging the buried electrolyte-semiconductor interface. Here, we demonstrate the real-space mapping of the channel conductance in ZnO EDLTs using a cryogenic microwave impedance microscope. A spin-coated ionic gel layer with typical thicknesses below 50 nm allows us to perform high resolution (on the order of 100 nm) subsurface imaging, while maintaining the capability of inducing the metal-insulator transition under a gate bias. The microwave images vividly show the spatial evolution of channel conductance and its local fluctuations through the transition as well as the uneven conductance distribution established by a large source-drain bias. The unique combination of ultrathin ion-gel gating and microwave imaging offers a new opportunity to study the local transport and mesoscopic electronic properties in EDLTs.


Asunto(s)
Conductividad Eléctrica , Electrólitos/química , Transistores Electrónicos , Óxido de Zinc/química , Diseño de Equipo , Iones/química , Microscopía , Microondas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA