Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 24(11): 1813-1824, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813965

RESUMEN

Kupffer cells, the liver tissue resident macrophages, are critical in the detection and clearance of cancer cells. However, the molecular mechanisms underlying their detection and phagocytosis of cancer cells are still unclear. Using in vivo genome-wide CRISPR-Cas9 knockout screening, we found that the cell-surface transmembrane protein ERMAP expressed on various cancer cells signaled to activate phagocytosis in Kupffer cells and to control of liver metastasis. ERMAP interacted with ß-galactoside binding lectin galectin-9 expressed on the surface of Kupffer cells in a manner dependent on glycosylation. Galectin-9 formed a bridging complex with ERMAP and the transmembrane receptor dectin-2, expressed on Kupffer cells, to induce the detection and phagocytosis of cancer cells by Kupffer cells. Patients with low expression of ERMAP on tumors had more liver metastases. Thus, our study identified the ERMAP-galectin-9-dectin-2 axis as an 'eat me' signal for Kupffer cells.


Asunto(s)
Citofagocitosis , Macrófagos del Hígado , Humanos , Fagocitosis/genética , Galectinas/genética , Galectinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
FASEB J ; 38(2): e23417, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38226856

RESUMEN

Long-term exposure to non-physiologically compatible dialysate inevitably leads to peritoneal fibrosis (PF) in patients undergoing peritoneal dialysis (PD), and there is no effective prevention or treatment for PF. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced after catalysis by sphingosine kinase (SPHK) 1/2 and activates signals through the S1P receptor (S1PR) via autocrine or paracrine. However, the role of SPHK1/S1P/S1PR signaling has never been elucidated in PF. In our research, we investigated S1P levels in peritoneal effluents and demonstrated the role of SPHK1/S1P/S1PR pathway in peritoneal fibrosis. It was found that S1P levels in peritoneal effluents were positively correlated with D/P Cr (r = 0.724, p < .001) and negatively correlated with 4 h ultrafiltration volume (r = -0.457, p < .001). S1PR1 and S1PR3 on peritoneal cells were increased after high glucose exposure in vivo and in vitro. Fingolimod was applied to suppress S1P/S1PR pathway. Fingolimod restored mouse peritoneal function by reducing interstitial hyperplasia, maintaining ultrafiltration volume, reducing peritoneal transport solute rate, and mitigating the protein expression changes of fibronectin, vimentin, α-SMA, and E-cadherin induced by PD and S1P. Fingolimod preserved the morphology of the human peritoneal mesothelial cells, MeT-5A, and moderated the mesothelial-mesenchymal transition (MMT) process. We further delineated that SPHK1 was elevated in peritoneal cells after high glucose exposure and suppression of SPHK1 in MeT-5A cells reduced S1P release. Overexpression of SPHK1 in MeT-5A cells increased S1P levels in the supernatant and fostered the MMT process. PF-543 treatment, targeting SPHK1, alleviated deterioration of mouse peritoneal function. In conclusion, S1P levels in peritoneal effluent were correlated with the deterioration of peritoneal function. SPHK1/S1P/S1PR pathway played an important role in PF.


Asunto(s)
Lisofosfolípidos , Fibrosis Peritoneal , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina/análogos & derivados , Animales , Ratones , Humanos , Clorhidrato de Fingolimod , Glucosa
3.
J Gene Med ; 25(1): e3456, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219542

RESUMEN

BACKGROUND: The c.194+2 T>C variant of serine protease inhibitor Kazal type 1 (SPINK1) is a known genetic risk factor found in Chinese patients with idiopathic chronic pancreatitis (ICP), but the early-onset mechanisms of ICP are still unclear. METHODS: Complementary experimental approaches were used to pursue other potential pathologies in the present study. The serum level of SPINK1 of ICP patients in the Han population in China was detected and verified by an enzyme-linked immunosorbent assay. Next, differentially expressed proteins and microRNAs from plasma samples of early-onset and late-onset ICP patients were screened by proteomic analysis and microarray, respectively. RESULTS: Combined with these advanced methods, the data strongly suggest that the regulatory effects of microRNAs were involved in the early-onset mechanism of the ICP by in vitro experiments. There was no significant difference in the plasma SPINK1 expression between the early-onset ICP and the late-onset patients. However, the expression of plasma glutathione peroxidase (GPx3) in early-onset ICP patients was markedly lower than that in late-onset ICP patients, although the level of hsa-miR-323b-5p was lower in late-onset patients compared to the early-onset ICP group. In vitro experiments confirmed that hsa-miR-323b-5p could increase apoptosis in caerulein-treated pancreatic acinar cells and inhibit the expression of GPx3. CONCLUSIONS: The up-regulated hsa-miR-323b-5p might play a crucial role in the early-onset mechanisms of ICP by diminishing the antioxidant activity through the down-regulation of GPx3.


Asunto(s)
MicroARNs , Pancreatitis Crónica , Humanos , MicroARNs/metabolismo , Pancreatitis Crónica/genética , Proteómica , Factores de Riesgo , Inhibidor de Tripsina Pancreática de Kazal/genética
4.
J Transl Med ; 21(1): 614, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697303

RESUMEN

BACKGROUND: Peritoneal dialysis (PD) remains limited due to dialysis failure caused by peritoneal fibrosis. Tamoxifen (TAM), an inhibitor of estrogen receptor 1 (ESR1), has been reported to treat fibrosis, but the underlying mechanism remains unknown. In this study, we sought to explore whether tamoxifen played an anti-fibrotic role by affecting transcription factor ESR1. METHODS: ESR1 expression was detected in the human peritoneum. Mice were daily intraperitoneally injected with 4.25% glucose PD dialysate containing 40 mM methylglyoxal for 2 weeks to establish PD-induced peritoneal fibrosis. Tamoxifen was administrated by daily gavage, at the dose of 10 mg/kg. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay were performed to validate ESR1 bound H19 promoter. Gain-of-function and loss-of-function experiments were performed to investigate the biological roles of H19 on the mesothelial-mesenchymal transition (MMT) of human peritoneal mesothelial cells (HPMCs). Intraperitoneal injection of nanomaterial-wrapped 2'-O-Me-modified small interfering RNA was applied to suppress H19 in the mouse peritoneum. RNA immunoprecipitation and RNA pull-down assays demonstrated binding between H19 and p300. Exfoliated peritoneal cells were obtained from peritoneal dialysis effluent to analyze the correlations between ESR1 (or H19) and peritoneal solute transfer rate (PSTR). RESULTS: ESR1 was increased significantly in the peritoneum after long-term exposure to PD dialysate. Tamoxifen treatment ameliorated high glucose-induced MMT of HPMCs, improved ultrafiltration rate, and decreased PSTR of mouse peritoneum. Tamoxifen reduced the H19 level by decreasing the ESR1 transcription of H19. Depletion of H19 reversed the pro-fibrotic effect of high glucose while ectopic expression of H19 exacerbated fibrotic pathological changes. Intraperitoneal injection of nanomaterial-wrapped 2'-O-Me-modified siRNAs targeting H19 mitigated PD-related fibrosis in mice. RNA immunoprecipitation (RIP) and RNA pull-down results delineated that H19 activated VEGFA expression by binding p300 to the VEGFA promoter and inducing histone acetylation of the VEGFA promoter. ESR1 and H19 were promising targets to predict peritoneal function. CONCLUSIONS: High glucose-induced MMT of peritoneal mesothelial cells in peritoneal dialysis via activating ESR1. In peritoneal mesothelial cells, ESR1 transcribed the H19 and H19 binds to transcription cofactor p300 to activate the VEGFA. Targeting ESR1/H19/VEGFA pathway provided new hope for patients undergoing peritoneal dialysis.


Asunto(s)
Fibrosis , Peritoneo , Tamoxifeno , Animales , Humanos , Ratones , Soluciones para Diálisis , Glucosa , ARN , Factor A de Crecimiento Endotelial Vascular/genética , Tamoxifeno/farmacología
5.
Cell Mol Biol Lett ; 27(1): 41, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35596159

RESUMEN

BACKGROUND: The molecular mechanisms driving hepatocellular carcinoma (HCC) remain largely unclear. As one of the major epitranscriptomic modifications, N6-methyladenosine (m6A) plays key roles in HCC. The aim of this study was to investigate the expression, roles, and mechanisms of action of the RNA methyltransferase methyltransferase-like protein 16 (METTL16) in HCC. METHODS: The expression of METTL16 and RAB11B-AS1 was determined by RT-qPCR. The regulation of RAB11B-AS1 by METTL16 was investigated by RNA immunoprecipitation (RIP), methylated RIP (MeRIP), and RNA stability assays. In vitro and in vivo gain- and loss-of-function assays were performed to investigate the roles of METTL16 and RAB11B-AS1. RESULTS: METTL16 was upregulated in HCC, and its increased expression was correlated with poor prognosis of HCC patients. METTL16 promoted HCC cellular proliferation, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumoral growth in vivo. METTL16 directly bound long noncoding RNA (lncRNA) RAB11B-AS1, induced m6A modification of RAB11B-AS1, and decreased the stability of RAB11B-AS1 transcript, leading to the downregulation of RAB11B-AS1. Conversely to METTL16, RAB11B-AS1 is downregulated in HCC, and its decreased expression was correlated with poor prognosis of patients with HCC. Furthermore, the expression of RAB11B-AS1 was negatively correlated with METTL16 in HCC tissues. RAB11B-AS1 repressed HCC cellular proliferation, migration, and invasion, promoted HCC cellular apoptosis, and inhibited HCC tumoral growth in vivo. Functional rescue assays revealed that overexpression of RAB11B-AS1 reversed the oncogenic roles of METTL16 in HCC. CONCLUSIONS: This study identified the METTL16/RAB11B-AS1 regulatory axis in HCC, which represented novel targets for HCC prognosis and treatment.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Metiltransferasas , MicroARNs , ARN Largo no Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Br J Cancer ; 125(6): 865-876, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34274945

RESUMEN

BACKGROUND: Many molecular alterations are shared by embryonic liver development and hepatocellular carcinoma (HCC). Identifying the common molecular events would provide a novel prognostic biomarker and therapeutic target for HCC. METHODS: Expression levels and clinical relevancies of SLC38A4 and HMGCS2 were investigated by qRT-PCR, western blot, TCGA and GEO datasets. The biological roles of SLC38A4 were investigated by functional assays. The downstream signalling pathway of SLC38A4 was investigated by qRT-PCR, western blot, immunofluorescence, luciferase reporter assay, TCGA and GEO datasets. RESULTS: SLC38A4 silencing was identified as an oncofetal molecular event. DNA hypermethylation contributed to the downregulations of Slc38a4/SLC38A4 in the foetal liver and HCC. Low expression of SLC38A4 was associated with poor prognosis of HCC patients. Functional assays demonstrated that SLC38A4 depletion promoted HCC cellular proliferation, stemness and migration, and inhibited HCC cellular apoptosis in vitro, and further repressed HCC tumorigenesis in vivo. HMGCS2 was identified as a critical downstream target of SLC38A4. SLC38A4 increased HMGCS2 expression via upregulating AXIN1 and repressing Wnt/ß-catenin/MYC axis. Functional rescue assays showed that HMGCS2 overexpression reversed the oncogenic roles of SLC38A4 depletion in HCC. CONCLUSIONS: SLC38A4 downregulation was identified as a novel oncofetal event, and SLC38A4 was identified as a novel tumour suppressor in HCC.


Asunto(s)
Sistema de Transporte de Aminoácidos A/genética , Sistema de Transporte de Aminoácidos A/metabolismo , Carcinoma Hepatocelular/patología , Regulación hacia Abajo , Hidroximetilglutaril-CoA Sintasa/metabolismo , Neoplasias Hepáticas/patología , Hígado/embriología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Trasplante de Neoplasias , Pronóstico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Vía de Señalización Wnt
7.
J Cell Mol Med ; 24(1): 238-249, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31680444

RESUMEN

Long noncoding RNA (lncRNA) has been suggested to play an important role in a variety of diseases over the past decade. In a previous study, we identified a novel lncRNA, termed HOXA11-AS, which was significantly up-regulated in calcium oxalate (CaOx) nephrolithiasis. However, the biological function of HOXA11-AS in CaOx nephrolithiasis remains poorly defined. Here, we demonstrated that HOXA11-AS was significantly up-regulated in CaOx nephrolithiasis both in vivo and in vitro. Gain-/loss-of-function studies revealed that HOXA11-AS inhibited proliferation, promoted apoptosis and aggravated cellular damage in HK-2 cells exposed to calcium oxalate monohydrate (COM). Further investigations showed that HOXA11-AS regulated monocyte chemotactic protein 1 (MCP-1) expression in HK-2 cell model of CaOx nephrolithiasis. In addition, online bioinformatics analysis and dual-luciferase reporter assay results showed that miR-124-3p directly bound to HOXA11-AS and the 3'UTR of MCP-1. Furthermore, rescue experiment results revealed that HOXA11-AS functioned as a competing endogenous RNA to regulate MCP-1 expression through sponging miR-124-3p and that overexpression of miR-124-3p restored the inhibitory effect of proliferation, promotion effects of apoptosis and cell damage induced by HOXA11-AS overexpression. Taken together, HOXA11-AS mediated CaOx crystal-induced renal inflammation via the miR-124-3p/MCP-1 axis, and this outcome may provide a good potential therapeutic target for nephrolithiasis.


Asunto(s)
Oxalato de Calcio/toxicidad , Quimiocina CCL2/metabolismo , Inflamación/genética , Riñón/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Regiones no Traducidas 3'/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Línea Celular , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cristalización , Técnicas de Silenciamiento del Gen , Humanos , Inflamación/patología , Riñón/metabolismo , Masculino , Ratones Endogámicos C57BL , Nefrolitiasis/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
8.
Hepatology ; 65(2): 529-543, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27774652

RESUMEN

N6 -Methyladenosine (m6 A) modification has been implicated in many biological processes. However, its role in cancer has not been well studied. Here, we demonstrate that m6 A modifications are decreased in hepatocellular carcinoma, especially in metastatic hepatocellular carcinoma, and that methyltransferase-like 14 (METTL14) is the main factor involved in aberrant m6 A modification. Moreover, METTL14 down-regulation acts as an adverse prognosis factor for recurrence-free survival of hepatocellular carcinoma and is significantly associated with tumor metastasis in vitro and in vivo. We confirm that METTL14 interacts with the microprocessor protein DGCR8 and positively modulates the primary microRNA 126 process in an m6 A-dependent manner. Further experiments show that microRNA 126 inhibits the repressing effect of METTL14 in tumor metastasis. CONCLUSION: These studies reveal an important role of METTL14 in tumor metastasis and provide a fresh view on m6 A modification in tumor progression. (Hepatology 2017;65:529-543).


Asunto(s)
Adenosina/análogos & derivados , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Metiltransferasas/genética , MicroARNs/metabolismo , Adenosina/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia/genética , Interferencia de ARN , Sensibilidad y Especificidad , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas
9.
Mol Cancer ; 16(1): 111, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659173

RESUMEN

BACKGROUND: Recent evidences showed that long noncoding RNAs (lncRNAs) are frequently dysregulated and play important roles in various cancers. Clear cell renal cell carcinoma (ccRCC) is one of the leading cause of cancer-related death, largely due to the metastasis of ccRCC. However, the clinical significances and roles of lncRNAs in metastatic ccRCC are still unknown. METHODS: lncRNA expression microarray analysis was performed to search the dysregulated lncRNA in metastatic ccRCC. quantitative real-time PCR was performed to measure the expression of lncRNAs in human ccRCC samples. Gain-of-function and loss-of-function experiments were performed to investigate the biological roles of lncRNAs on ccRCC cell proliferation, migration, invasion and in vivo metastasis. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and western blot were performed to explore the molecular mechanisms underlying the functions of lncRNAs. RESULTS: The microarray analysis identified a novel lncRNA termed metastatic renal cell carcinoma-associated transcript 1 (MRCCAT1), which is highly expressed in metastatic ccRCC tissues and associated with the metastatic properties of ccRCC. Multivariate Cox regression analysis revealed that MRCCAT1 is an independent prognostic factor for ccRCC patients. Overexpression of MRCCAT1 promotes ccRCC cells proliferation, migration, and invasion. Depletion of MRCCAT1 inhibites ccRCC cells proliferation, migration, and invasion in vitro, and ccRCC metastasis in vivo. Mechanistically, MRCCAT1 represses NPR3 transcription by recruiting PRC2 to NPR3 promoter, and subsequently activates p38-MAPK signaling pathway. CONCLUSIONS: MRCCAT1 is a critical lncRNA that promotes ccRCC metastasis via inhibiting NPR3 and activating p38-MAPK signaling. Our results imply that MRCCAT1 could serve as a prognostic biomarker and therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales/patología , Neoplasias Renales/patología , ARN Largo no Codificante/genética , Receptores del Factor Natriurético Atrial/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Anciano , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/mortalidad , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/mortalidad , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Pronóstico , Regiones Promotoras Genéticas , Receptores del Factor Natriurético Atrial/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/genética
10.
Hepatology ; 63(3): 850-63, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26663434

RESUMEN

UNLABELLED: Systemic analyses using large-scale genomic profiles have successfully identified cancer-driving somatic copy number variations (SCNVs) loci. However, functions of vast focal SCNVs in "protein-coding gene desert" regions are largely unknown. The integrative analysis of long noncoding RNA (lncRNA) expression profiles with SCNVs in hepatocellular carcinoma (HCC) led us to identify the recurrent deletion of lncRNA-PRAL (p53 regulation-associated lncRNA) on chromosome 17p13.1, whose genomic alterations were significantly associated with reduced survival of HCC patients. We found that lncRNA-PRAL could inhibit HCC growth and induce apoptosis in vivo and in vitro through p53. Subsequent investigations indicated that the three stem-loop motifs at the 5' end of lncRNA-PRAL facilitated the combination of HSP90 and p53 and thus competitively inhibited MDM2-dependent p53 ubiquitination, resulting in enhanced p53 stability. Additionally, in vivo lncRNA-PRAL delivery efficiently reduced intrinsic tumors, indicating its potential therapeutic application. CONCLUSIONS: lncRNA-PRAL, one of the key cancer-driving SCNVs, is a crucial stimulus for HCC growth and may serve as a potential target for antitumor therapy.


Asunto(s)
Carcinoma Hepatocelular/genética , Variaciones en el Número de Copia de ADN , Neoplasias Hepáticas/genética , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Anciano , Animales , Secuencia de Bases , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , China/epidemiología , Puntos de Rotura del Cromosoma , Femenino , Genes p53 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Secuencias Invertidas Repetidas , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Masculino , Ratones Desnudos , Persona de Mediana Edad , Datos de Secuencia Molecular , Pronóstico
11.
Mol Cancer ; 14: 170, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26376879

RESUMEN

BACKGROUND: Downregulation of Aldolase B (ALDOB) has been reported in hepatocellular carcinoma. However, its clinical significance and its role in pathogenesis of HCC remain largely unknown. METHODS: We analyzed the expression of ALDOB and its clinical features in a large cohort of 313 HCC patients using tissue microarray and immunohistochemistry. Moreover, the function of stably overexpressed ALDOB in HCC cells was explored in vitro and in vivo. Gene expression microarray analysis was performed on ALDOB-overexpressing SMMC7721 cells to elucidate its mechanism of action. RESULTS: ALDOB downregulation in HCC was significantly correlated with aggressive characteristics including absence of encapsulation, increased tumor size (>5 cm) and early recurrence. ALDOB downregulation was indicative of a shorter recurrence-free survival (RFS) and overall survival (OS) for all HCC patients and early-stage HCC patients (BCLC 0-A and TNM I stage patients). Multiple analyses revealed that ALDOB downregulation was an independent risk factor of RFS and OS. Stable expression of ALDOB in HCC cell lines reduced cell migration in vitro and inhibited lung metastasis, intrahepatic metastasis, and reduced circulating tumor cells in vivo. Mechanistically, we found that cells stably expressing ALDOB show elevated Ten-Eleven Translocation 1 (TET1) expression. Moreover, ALDOB expressing cells have higher levels of methylglyoxal than do control cells, which can upregulate TET1 expression. CONCLUSION: The downregulation of ALDOB could indicate a poor prognosis for HCC patients, and therefore, ALDOB might be considered a prognostic biomarker for HCC, especially at the early stage. In addition, ALDOB inhibits the invasive features of cell lines partly through TET1 expression.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Carcinoma Hepatocelular/genética , Proteínas de Unión al ADN/biosíntesis , Fructosa-Bifosfato Aldolasa/biosíntesis , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas/biosíntesis , Anciano , Animales , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Supervivencia sin Enfermedad , Femenino , Fructosa-Bifosfato Aldolasa/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Oxigenasas de Función Mixta , Metástasis de la Neoplasia , Pronóstico , Proteínas Proto-Oncogénicas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Hepatology ; 60(4): 1278-90, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25043274

RESUMEN

UNLABELLED: Many protein-coding oncofetal genes are highly expressed in murine and human fetal liver and silenced in adult liver. The protein products of these hepatic oncofetal genes have been used as clinical markers for the recurrence of hepatocellular carcinoma (HCC) and as therapeutic targets for HCC. Herein we examined the expression profiles of long noncoding RNAs (lncRNAs) found in fetal and adult liver in mice. Many fetal hepatic lncRNAs were identified; one of these, lncRNA-mPvt1, is an oncofetal RNA that was found to promote cell proliferation, cell cycling, and the expression of stem cell-like properties of murine cells. Interestingly, we found that human lncRNA-hPVT1 was up-regulated in HCC tissues and that patients with higher lncRNA-hPVT1 expression had a poor clinical prognosis. The protumorigenic effects of lncRNA-hPVT1 on cell proliferation, cell cycling, and stem cell-like properties of HCC cells were confirmed both in vitro and in vivo by gain-of-function and loss-of-function experiments. Moreover, mRNA expression profile data showed that lncRNA-hPVT1 up-regulated a series of cell cycle genes in SMMC-7721 cells. By RNA pulldown and mass spectrum experiments, we identified NOP2 as an RNA-binding protein that binds to lncRNA-hPVT1. We confirmed that lncRNA-hPVT1 up-regulated NOP2 by enhancing the stability of NOP2 proteins and that lncRNA-hPVT1 function depends on the presence of NOP2. CONCLUSION: Our study demonstrates that the expression of many lncRNAs is up-regulated in early liver development and that the fetal liver can be used to search for new diagnostic markers for HCC. LncRNA-hPVT1 promotes cell proliferation, cell cycling, and the acquisition of stem cell-like properties in HCC cells by stabilizing NOP2 protein. Regulation of the lncRNA-hPVT1/NOP2 pathway may have beneficial effects on the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/fisiopatología , Proliferación Celular/fisiología , Neoplasias Hepáticas/fisiopatología , Células Madre Neoplásicas/fisiología , Proteínas Nucleares/fisiología , ARN Largo no Codificante/fisiología , ARNt Metiltransferasas/fisiología , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Ciclo Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Pronóstico , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta1/fisiología
13.
Biochim Biophys Acta ; 1830(10): 4899-906, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23811339

RESUMEN

BACKGROUND: H19 was one of the earliest identified, and is the most studied, long noncoding RNAs. It is presumed that H19 is essential for regulating development and disease conditions, and it is associated with carcinogenesis for many types. However the biological function and regulatory mechanism of this conserved RNA, particularly with respect to its effect on transcription, remain largely unknown. METHODS: We performed RNA pulldown, RNA immunoprecipitation and deletion mapping to identify the proteins that are associated with H19. In addition, we employed EU (5-ethynyl uridine) incorporation, immunoprecipitation and Western blotting to investigate the functional aspects of H19. RESULTS: Our research further verifies that H19 is bound to hnRNP U, and this interaction is located within the 5' 882 nt region of H19. Moreover, H19 disrupts the interaction between hnRNP U and actin, which inhibits phosphorylation at Ser5 of the RNA polymerase II (Pol II) C-terminal domain (CTD), consequently preventing RNA Pol II-mediated transcription. We also showed that hnRNP U is essential for H19-mediated transcription repression. CONCLUSIONS: In this study, we demonstrate that H19 inhibits RNA Pol II-mediated transcription by disrupting the hnRNP U-actin complex. GENERAL SIGNIFICANCE: These data suggest that H19 regulates general transcription and exerts wide-ranging effects in organisms.


Asunto(s)
Actinas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/fisiología , Transcripción Genética/fisiología , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Humanos , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Hepatology ; 58(2): 739-51, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23483581

RESUMEN

UNLABELLED: In recent years, long noncoding RNAs (lncRNAs) have been investigated as a new class of regulators of biological function. A recent study reported that lncRNAs control cell proliferation in hepatocellular carcinoma (HCC). However, the role of lncRNAs in liver regeneration and the overall mechanisms remain largely unknown. To address this issue, we carried out a genome-wide lncRNA microarray analysis during liver regeneration in mice after 2/3 partial hepatectomy (PH) at various timepoints. The results revealed differential expression of a subset of lncRNAs, notably a specific differentially expressed lncRNA associated with Wnt/ß-catenin signaling during liver regeneration (an lncRNA associated with liver regeneration, termed lncRNA-LALR1). The functions of lncRNA-LALR1 were assessed by silencing and overexpressing this lncRNA in vitro and in vivo. We found that lncRNA-LALR1 enhanced hepatocyte proliferation by promoting progression of the cell cycle in vitro. Furthermore, we showed that lncRNA-LALR1 accelerated mouse hepatocyte proliferation and cell cycle progression during liver regeneration in vivo. Mechanistically, we discovered that lncRNA-LALR1 facilitated cyclin D1 expression through activation of Wnt/ß-catenin signaling by way of suppression of Axin1. In addition, lncRNA-LALR1 inhibited the expression of Axin1 mainly by recruiting CTCF to the AXIN1 promoter region. We also identified a human ortholog RNA of lncRNA-LALR1 (lncRNA-hLALR1) and found that it was expressed in human liver tissues. CONCLUSION: lncRNA-LALR1 promotes cell cycle progression and accelerates hepatocyte proliferation during liver regeneration by activating Wnt/ß-catenin signaling. Pharmacological intervention targeting lncRNA-LALR1 may be therapeutically beneficial in liver failure and liver transplantation by inducing liver regeneration.


Asunto(s)
Factor de Transcripción Activador 3/fisiología , Proliferación Celular , Hepatocitos/patología , Regeneración Hepática/fisiología , ARN Largo no Codificante/fisiología , Transducción de Señal/fisiología , Proteínas Wnt/fisiología , beta Catenina/fisiología , Adulto , Animales , Proteína Axina/fisiología , Ciclo Celular/fisiología , Femenino , Hepatectomía , Hepatocitos/fisiología , Humanos , Técnicas In Vitro , Hígado/patología , Hígado/fisiología , Hígado/cirugía , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
15.
Signal Transduct Target Ther ; 9(1): 91, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627387

RESUMEN

Without intervention, a considerable proportion of patients with metabolism-associated fatty liver disease (MAFLD) will progress from simple steatosis to metabolism-associated steatohepatitis (MASH), liver fibrosis, and even hepatocellular carcinoma. However, the molecular mechanisms that control progressive MAFLD have yet to be fully determined. Here, we unraveled that the expression of the N6-methyladenosine (m6A) methyltransferase METTL14 is remarkably downregulated in the livers of both patients and several murine models of MAFLD, whereas hepatocyte-specific depletion of this methyltransferase aggravated lipid accumulation, liver injury, and fibrosis. Conversely, hepatic Mettl14 overexpression alleviated the above pathophysiological changes in mice fed on a high-fat diet (HFD). Notably, in vivo and in vitro mechanistic studies indicated that METTL14 downregulation decreased the level of GLS2 by affecting the translation efficiency mediated by YTHDF1 in an m6A-depedent manner, which might help to form an oxidative stress microenvironment and accordingly recruit Cx3cr1+Ccr2+ monocyte-derived macrophages (Mo-macs). In detail, Cx3cr1+Ccr2+ Mo-macs can be categorized into M1-like macrophages and S100A4-positive macrophages and then further activate hepatic stellate cells (HSCs) to promote liver fibrosis. Further experiments revealed that CX3CR1 can activate the transcription of S100A4 via CX3CR1/MyD88/NF-κB signaling pathway in Cx3cr1+Ccr2+ Mo-macs. Restoration of METTL14 or GLS2, or interfering with this signal transduction pathway such as inhibiting MyD88 could ameliorate liver injuries and fibrosis. Taken together, these findings indicate potential therapies for the treatment of MAFLD progression.


Asunto(s)
FN-kappa B , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Regulación hacia Abajo/genética , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores de Quimiocina , Proteína de Unión al Calcio S100A4
16.
Carcinogenesis ; 34(3): 577-86, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23222811

RESUMEN

Although numerous long non-coding RNAs (lncRNAs) have been identified in mammals, many of their biological roles remain to be characterized. Early reports suggest that H19 contributes to carcinogenesis, including hepatocellular carcinoma (HCC). Examination of the Oncomine resource showed that most HCC cases express H19 at a level that is comparable with the liver, with a tendency toward lower expression. This is consistent with our previous microarray data and indicates a more complicated role of H19 in HCC that needs to be characterized. In this study, the expression level of H19 was assessed in different regions of HCC patients' liver samples. Loss- and gain-of-function studies on this lncRNA in the HCC cell lines, SMMC7721 and HCCLM3, were used to characterize its effects on gene expression and to assess its effect on HCC metastasis both in vitro and in vivo. In this study, we show that H19 was underexpressed in intratumoral HCC tissues (T), as compared with peritumoral tissues (L). Additionally, low T/L ratio of H19 predicted poor prognosis. H19 suppressed HCC progression metastasis and the expression of markers of epithelial-to-mesenchymal transition. Furthermore, H19 associated with the protein complex hnRNP U/PCAF/RNAPol II, activating miR-200 family by increasing histone acetylation. The results demonstrate that H19 can alter the miR-200 pathway, thus contributing to mesenchymal-to-epithelial transition and to the suppression of tumor metastasis. These data provide an explanation for the hitherto puzzling literature on the relationship between H19 and cancer, and could suggest the development of combination therapies that target H19 and the miR-200 family.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Epigénesis Genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , ARN Largo no Codificante/metabolismo , Acetilación , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/secundario , Línea Celular Tumoral , Proliferación Celular , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , MicroARNs/metabolismo , Invasividad Neoplásica , Trasplante de Neoplasias , Pronóstico , Procesamiento Proteico-Postraduccional , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , Carga Tumoral , Regulación hacia Arriba
17.
Hepatology ; 54(6): 2025-35, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21837748

RESUMEN

UNLABELLED: As an important epigenetic mechanism, histone acetylation modulates the transcription of many genes and plays important roles in hepatocellular carcinoma (HCC). Aberrations in histone acetylation have been observed in HCC, but the factors that contribute to the aberrations have not been fully elucidated. MicroRNAs (miRNAs), which are noncoding RNAs that regulate gene expression, are involved in important epigenetic mechanisms. In this study, we determined that miR-200a and the level of histone H3 acetylation at its promoter were reduced in human HCC tissues in comparison with adjacent noncancerous hepatic tissues. Furthermore, our results suggested that the histone deacetylase 4 (HDAC4) inhibited the expression of miR-200a and its promoter activity and reduced the histone H3 acetylation level at the mir-200a promoter through a Sp1-dependent pathway. Interestingly, we observed that the miR-200a directly targeted the 3'-untranslated region of the HDAC4 messenger RNA and repressed expression of HDAC4. Therefore, miR-200a ultimately induced its own transcription and increased the histone H3 acetylation level at its own promoter. Through targeting HDAC4, miR-200a also induced the up-regulation of total acetyl-histone H3 levels and increased the histone H3 acetylation level at the p21(WAF/Cip1) promoter. Finally, we determined that miR-200a inhibited the proliferation and migration of HCC cells in vivo and in vitro. CONCLUSION: Our findings suggest that the HDAC4/Sp1/miR-200a regulatory network induces the down-regulation of miR-200a and the up-regulation of HDAC4 in HCC. As a result, down-regulation of miR-200a enhances the proliferation and migration of HCC cells and induces aberrant histone acetylation in HCC. These findings highlight a potential therapeutic approach in targeting the HDAC4/Sp1/miR-200a regulatory network for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Histona Desacetilasas/fisiología , Neoplasias Hepáticas/metabolismo , MicroARNs/fisiología , Proteínas Represoras/fisiología , Factor de Transcripción Sp1/fisiología , Acetilación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Histonas/metabolismo , Humanos , Hígado/metabolismo , ARN Mensajero/metabolismo , Regulación hacia Arriba
18.
Hepatology ; 54(5): 1679-89, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21769904

RESUMEN

UNLABELLED: In recent years, long noncoding RNAs (lncRNAs) have been shown to have critical regulatory roles in cancer biology. However, the contributions of lncRNAs to hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) remain largely unknown. Differentially expressed lncRNAs between HBV-related HCC and paired peritumoral tissues were identified by microarray and validated using quantitative real-time polymerase chain reaction. Liver samples from patients with HBV-related HCC were analyzed for levels of a specific differentially expressed lncRNA High Expression In HCC (termed lncRNA-HEIH); data were compared with survival data using the Kaplan-Meier method and compared between groups by the log-rank test. The effects of lncRNA-HEIH were assessed by silencing and overexpressing the lncRNA in vitro and in vivo. The expression level of lncRNA-HEIH in HBV-related HCC is significantly associated with recurrence and is an independent prognostic factor for survival. We also found that lncRNA-HEIH plays a key role in G(0) /G(1) arrest, and further demonstrated that lncRNA-HEIH was associated with enhancer of zeste homolog 2 (EZH2) and that this association was required for the repression of EZH2 target genes. CONCLUSIONS: Together, these results indicate that lncRNA-HEIH is an oncogenic lncRNA that promotes tumor progression and leads us to propose that lncRNAs may serve as key regulatory hubs in HCC progression.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas de Unión al ADN/genética , Neoplasias Hepáticas/genética , ARN no Traducido/genética , Factores de Transcripción/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Ciclo Celular/genética , Proteína Potenciadora del Homólogo Zeste 2 , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/fisiología , Silenciador del Gen , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Pronóstico , Proteínas Represoras/genética
19.
Biomed Pharmacother ; 89: 276-283, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28236701

RESUMEN

Alternative splicing plays critical roles in many pathophysiological processes and splicing dysregulation is a hallmark of cancer. The different isoforms may have significantly different effects on cancers. POLDIP3 is a target of ribosomal protein S6 kinase 1, and regulates DNA replication and mRNA translation. In this study, we measured the expression of an alternative POLDIP3 transcript (POLDIP3-ß), which lacks exon 3 and 29 amine acids, in clinical hepatocellular carcinoma (HCC) tissues. The roles of POLDIP3-ß on HCC cell proliferation, apoptosis, and migration were assessed by Glo cell viability assays, Ethynyl deoxyuridine incorporation assays, colony formation assays, TUNEL assays, Annexin V-propidium iodide staining and flow cytometry, transwell assays, wound healing assays, and in vivo xenograft growth. Our results showed that POLDIP3-ß was significantly upregulated in HCC tissues compared with paired adjacent noncancerous hepatic tissues. In vitro and in vivo functional experiments results demonstrated that overexpression of POLDIP3-ß drastically increased HCC cell proliferation, inhibited HCC cell apoptosis, enhanced HCC cell migration, and promoted xenograft growth. While the effects of normal POLDIP3, which contains exon 3, were much weaker. In conclusion, our study demonstrated that an alternative transcript of POLDIP3 is upregulated and functions as a critical oncogene in HCC. Selectively targeting this isoform of POLDIP3 would be a promising therapeutic strategy for HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas Nucleares/genética , Proteínas de Unión al ARN/genética , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Progresión de la Enfermedad , Exones/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Regulación hacia Arriba/genética
20.
Biomed Pharmacother ; 95: 111-119, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28837877

RESUMEN

M2 macrophages play critical roles in the progression of hepatocellular carcinoma (HCC), and they are associated with poor outcomes. TGF-ß-induced epithelial-mesenchymal transition (EMT) has been shown to be critically important to cancer cell dissemination in HCC. However, the relationship between stromal-like HCC cells and M2 macrophages formation is not clear. Here, we interrogated the molecular link between mesenchymal-like HCC cells and the formation of M2 macrophages. We demonstrated that mesenchymal-like HCC cells secrete connective tissue growth factor (CTGF) to polarized macrophages. Reciprocally, Chemokine ligand 18 (CCL18) from M2 macrophages promotes HCC progression. Furthermore, CTGF and CCL18 were increased significantly in HCC compared to adjacent normal liver tissues. In summary, our study discovered a positive feedback loop between CTGF and CCL18 in HCC metastasis. Targeting CTGF or CCL18 might provide beneficial effects for the clinical treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Quimiocinas CC/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , Macrófagos/fisiología , Línea Celular Tumoral , Movimiento Celular , Quimiocinas CC/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA