Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 311(1): R166-78, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27170659

RESUMEN

The mounting of appropriate emotional and neuroendocrine responses to environmental stressors critically depends on the hypothalamic-pituitary-adrenal (HPA) axis and associated limbic circuitry. Although its function is currently unknown, the highly evolutionarily conserved transmembrane protein 35 (TMEM35) is prominently expressed in HPA circuitry and limbic areas, including the hippocampus and amygdala. To investigate the possible involvement of this protein in neuroendocrine function, we generated tmem35 knockout (KO) mice to characterize the endocrine, behavioral, electrophysiological, and proteomic alterations caused by deletion of the tmem35 gene. While capable of mounting a normal corticosterone response to restraint stress, KO mice showed elevated basal corticosterone accompanied by increased anxiety-like behavior. The KO mice also displayed impairment of hippocampus-dependent fear and spatial memories. Given the intact memory acquisition but a deficit in memory retention in the KO mice, TMEM35 is likely required for long-term memory consolidation. This conclusion is further supported by a loss of long-term potentiation in the Schaffer collateral-CA1 pathway in the KO mice. To identify putative molecular pathways underlying alterations in plasticity, proteomic analysis of synaptosomal proteins revealed lower levels of postsynaptic molecules important for synaptic plasticity in the KO hippocampus, including PSD95 and N-methyl-d-aspartate receptors. Pathway analysis (Ingenuity Pathway Analysis) of differentially expressed synaptic proteins in tmem35 KO hippocampus implicated molecular networks associated with specific cellular and behavioral functions, including decreased long-term potentiation, and increased startle reactivity and locomotion. Collectively, these data suggest that TMEM35 is a novel factor required for normal activity of the HPA axis and limbic circuitry.


Asunto(s)
Proteínas de la Membrana/genética , Trastornos de la Memoria/genética , Memoria a Largo Plazo , Estrés Psicológico/genética , Animales , Ansiedad/genética , Ansiedad/psicología , Conducta Animal , Química Encefálica/genética , Corticosterona/sangre , Eliminación de Gen , Sistema Hipotálamo-Hipofisario , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Hipófiso-Suprarrenal , Proteómica , Transducción de Señal/fisiología , Sinaptosomas/metabolismo
2.
J Neurogenet ; 30(3-4): 178-184, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27785950

RESUMEN

Kinase-mediated signaling cascades regulate a number of different molecular mechanisms involved in cellular homeostasis, and are viewed as one of the most common intracellular processes that are robustly dysregulated in the pathophysiology of mood disorders such as depression. Newly emerged, rapid acting antidepressants are able to achieve therapeutic improvement, possibly in part, through stimulating activity of kinase-dependent signaling pathways. Thus, advancements in our understanding of how kinases may contribute to development and treatment of depression seem crucial. However, current investigations are limited to a single or small number of kinases and are unable to detect novel kinases. Here, we review fast developing kinome profiling approaches that allow identification of multiple kinases and kinase network connections simultaneously, analyze technical limitation and challenges, and discuss their future applications to mood disorders and antidepressant treatment.


Asunto(s)
Antidepresivos/farmacología , Trastornos del Humor/tratamiento farmacológico , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Humanos , Trastornos del Humor/enzimología , Transducción de Señal/fisiología
3.
Neural Plast ; 2016: 5460732, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977323

RESUMEN

Neuropsychiatric symptoms and mental illness are commonly present in patients with chronic systemic diseases. Mood disorders, such as depression, are present in up to 50% of these patients, resulting in impaired physical recovery and more intricate treatment regimen. Stress associated with both physical and emotional aspects of systemic illness is thought to elicit detrimental effects to initiate comorbid mental disorders. However, clinical reports also indicate that the relationship between systemic and psychiatric illnesses is bidirectional, further increasing the complexity of the underlying pathophysiological processes. In this review, we discuss the recent evidence linking chronic stress and systemic illness, such as activation of the immune response system and release of common proinflammatory mediators. Altogether, discovery of new targets is needed for development of better treatments for stress-related psychiatric illnesses as well as improvement of mental health aspects of different systemic diseases.


Asunto(s)
Encéfalo/fisiopatología , Enfermedad Crónica/epidemiología , Estrés Psicológico/epidemiología , Estrés Psicológico/fisiopatología , Animales , Encéfalo/inmunología , Enfermedad Crónica/psicología , Comorbilidad , Citocinas/metabolismo , Humanos , Trastornos del Humor/epidemiología , Trastornos del Humor/inmunología , Trastornos del Humor/fisiopatología , Factores de Crecimiento Nervioso/metabolismo , Plasticidad Neuronal , Estrés Psicológico/inmunología
4.
Cell Mol Neurobiol ; 34(5): 693-705, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687455

RESUMEN

The ramifications of statins on plasma cholesterol and coronary heart disease have been well documented. However, there is increasing evidence that inhibition of the mevalonate pathway may provide independent neuroprotective and procognitive pleiotropic effects, most likely via inhibition of isoprenoids, mainly farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are the major donors of prenyl groups for protein prenylation. Modulation of isoprenoid availability impacts a slew of cellular processes including synaptic plasticity in the hippocampus. Our previous work has demonstrated that simvastatin (SV) administration improves hippocampus-dependent spatial memory, rescuing memory deficits in a mouse model of Alzheimer's disease. Treatment of hippocampal slices with SV enhances long-term potentiation (LTP), and this effect is dependent on the activation of Akt (protein kinase B). Further studies showed that SV-induced enhancement of hippocampal LTP is driven by depletion of FPP and inhibition of farnesylation. In the present study, we report the functional consequences of exposure to SV at cellular/synaptic and molecular levels. While application of SV has no effect on intrinsic membrane properties of CA1 pyramidal neurons, including hyperpolarization-activated cyclic-nucleotide channel-mediated sag potentials, the afterhyperpolarization (AHP), and excitability, SV application potentiates the N-methyl D-aspartate receptor (NMDAR)-mediated contribution to synaptic transmission. In mouse hippocampal slices and human neuronal cells, SV treatment increases the surface distribution of the GluN2B subunit of the NMDAR without affecting cellular cholesterol content. We conclude that SV-induced enhancement of synaptic plasticity in the hippocampus is likely mediated by augmentation of synaptic NMDAR components that are largely responsible for driving synaptic plasticity in the CA1 region.


Asunto(s)
Membrana Celular/metabolismo , Subunidades de Proteína/biosíntesis , Receptores de N-Metil-D-Aspartato/biosíntesis , Simvastatina/farmacología , Transmisión Sináptica/fisiología , Regulación hacia Arriba/fisiología , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
5.
J Appl Physiol (1985) ; 136(3): 592-605, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299221

RESUMEN

Regular exercise has numerous health benefits, but the human population displays significant variability in exercise participation. Rodent models, such as voluntary wheel running (VWR) in rats, can provide insight into the underlying mechanisms of exercise behavior and its regulation. In this study, we focused on the role of estrogen on VWR in female rats. Female rats run more than males, and we aimed to determine to what extent running levels in females were regulated by estrogen signaling. The running behavior of rats (duration, speed, and total distance run) was measured under normal physiological conditions, ovariectomy (OVX), and estrogen replacement in an OVX background. Results show cyclic variations in running linked to the estrous cycle. Ovariectomy markedly reduced running and eliminated the cyclic pattern. Estrogen replacement through estradiol benzoate (EB) injections and osmotic minipumps reinstated running activity to pre-OVX levels and restored the cyclic pattern. Importantly, individual differences and ranking are preserved such that high versus low runners before OVX remain high and low runners after treatment. Further analysis revealed that individual variation in running distance was primarily caused by rats running different speeds, but rats also varied in running duration. However, it is noteworthy that this model also displays features distinct from estrogen-driven running behavior under physiological conditions, notably a delayed onset and a broader duration of running activity. Collectively, this estrogen causality VWR model presents a unique opportunity to investigate sex-specific mechanisms that control voluntary physical activity.NEW & NOTEWORTHY This study investigates estrogen's role in voluntary wheel running (VWR) behavior in female rats. Female rats exhibit greater running than males, with estrogen signaling regulating this activity. The estrous cycle influences running, whereas ovariectomy reduces it, and estrogen replacement restores it, maintaining individual differences under all conditions. Both running speed and duration contribute to VWR variations. These findings emphasize individual estrogen regulation in female exercise and provide an estrogen replacement animal model for investigating neurobiological underpinnings that drive voluntary exercise behavior.


Asunto(s)
Individualidad , Actividad Motora , Masculino , Humanos , Ratas , Animales , Femenino , Actividad Motora/fisiología , Estrógenos/farmacología , Estradiol/farmacología , Ovariectomía
6.
Hippocampus ; 23(10): 952-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23733517

RESUMEN

Iron deficiency (ID) during early life causes long-lasting detrimental cognitive sequelae, many of which are linked to alterations in hippocampus function, dopamine synthesis, and the modulation of dopaminergic circuitry by the hippocampus. These same features have been implicated in the origins of schizophrenia, a neuropsychiatric disorder with significant cognitive impairments. Deficits in sensorimotor gating represent a reliable endophenotype of schizophrenia that can be measured by prepulse inhibition (PPI) of the acoustic startle reflex. Using two rodent model systems, we investigated the influence of early-life ID on PPI in adulthood. To isolate the role of hippocampal iron in PPI, our mouse model utilized a timed (embryonic day 18.5), hippocampus-specific knockout of Slc11a2, a gene coding an important regulator of cellular iron uptake, the divalent metal transport type 1 protein (DMT-1). Our second model used a classic rat dietary-based global ID during gestation, a condition that closely mimics human gestational ID anemia (IDA). Both models exhibited impaired PPI in adulthood. Furthermore, our DMT-1 knockout model displayed reduced long-term potentiation (LTP) and elevated paired-pulse facilitation (PPF), electrophysiological results consistent with previous findings in the IDA rat model. These results, in combination with previous findings demonstrating impaired hippocampus functioning and altered dopaminergic and glutamatergic neurotransmission, suggest that iron availability within the hippocampus is critical for the neurodevelopmental processes underlying sensorimotor gating. Ultimately, evidence of reduced PPI in both of our models may offer insights into the roles of fetal ID and the hippocampus in the pathophysiology of schizophrenia.


Asunto(s)
Conducta Animal/fisiología , Enfermedades Carenciales/complicaciones , Hipocampo/metabolismo , Deficiencias de Hierro , Trastornos del Metabolismo del Hierro/complicaciones , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Anemia Ferropénica/sangre , Anemia Ferropénica/complicaciones , Anemia Ferropénica/fisiopatología , Animales , Proteínas de Transporte de Catión/genética , Enfermedades Carenciales/fisiopatología , Modelos Animales de Enfermedad , Femenino , Trastornos Nutricionales en el Feto/sangre , Trastornos Nutricionales en el Feto/fisiopatología , Hipocampo/patología , Hipocampo/fisiopatología , Hierro/metabolismo , Trastornos del Metabolismo del Hierro/sangre , Trastornos del Metabolismo del Hierro/fisiopatología , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Embarazo , Complicaciones del Embarazo/sangre , Ratas , Ratas Sprague-Dawley , Potenciales Sinápticos/fisiología
7.
Nucleic Acids Res ; 39(Database issue): D895-900, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21051346

RESUMEN

Chromosomal rearrangement (CR) events result from abnormal breaking and rejoining of the DNA molecules, or from crossing-over between repetitive DNA sequences, and they are involved in many tumor and non-tumor diseases. Investigations of disease-associated CR events can not only lead to important discoveries about DNA breakage and repair mechanisms, but also offer important clues about the pathologic causes and the diagnostic/therapeutic targets of these diseases. We have developed a database of Chromosomal Rearrangements In Diseases (dbCRID, http://dbCRID.biolead.org), a comprehensive database of human CR events and their associated diseases. For each reported CR event, dbCRID documents the type of the event, the disease or symptoms associated, and--when possible--detailed information about the CR event including precise breakpoint positions, junction sequences, genes and gene regions disrupted and experimental techniques applied to discover/analyze the CR event. With 2643 records of disease-associated CR events curated from 1172 original studies, dbCRID is a comprehensive and dynamic resource useful for studying DNA breakage and repair mechanisms, and for analyzing the genetic basis of human tumor and non-tumor diseases.


Asunto(s)
Aberraciones Cromosómicas , Bases de Datos Factuales , Enfermedad/genética , Puntos de Rotura del Cromosoma , Humanos , Neoplasias/genética , Interfaz Usuario-Computador
8.
Front Behav Neurosci ; 17: 1169151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37273279

RESUMEN

Introduction: Sedentary lifestyles have reached epidemic proportions world-wide. A growing body of literature suggests that exposures to adverse experiences (e.g., psychological traumas) are a significant risk factor for the development of physically inactive lifestyles. However, the biological mechanisms linking prior stress exposure and persistent deficits in physical activity engagement remains poorly understood. Methods: The purpose of this study was twofold. First, to identify acute stress intensity thresholds that elicit long-term wheel running deficits in rats. To that end, young adult male rats were exposed to a single episode of 0, 50, or 100 uncontrollable tail shocks and then given free access to running wheels for 9 weeks. Second, to identify stress-induced changes to central monoamine neurotransmitters and peripheral muscle physiology that may be maladaptive to exercise output. For this study, rats were either exposed to a single episode of uncontrollable tail shocks (stress) or left undisturbed in home cages (unstressed). Eight days later, monoamine-related neurochemicals were quantified by ultra-high performance liquid chromatography (UHPLC) across brain reward, motor, and emotion structures immediately following a bout of graded treadmill exercise controlled for duration and intensity. Additionally, protein markers of oxidative stress, inflammation, and metabolic activity were assessed in the gastrocnemius muscle by Western blot. Results: For experiment 1, stress exposure caused a shock number-dependent two to fourfold decrease in wheel running distance across the entire duration of the study. For experiment 2, stress exposure curbed an exercise-induced increase of dopamine (DA) turnover measures in the prefrontal cortex and hippocampus, and augmented serotonin (5HT) turnover in the hypothalamus and remaining cortical area. However, stress exposure also caused several monoaminergic changes independent of exercise that could underlie impaired motivation for physical activity, including a mild dopamine deficiency in the striatal area. Finally, stress potently increased HSP70 and lowered SOD2 protein concentrations in the gastrocnemius muscle, which may indicate prolonged oxidative stress. Discussion: These data support some of the possible central and peripheral mechanisms by which exposure to adverse experiences may chronically impair physical activity engagement.

9.
Epilepsia ; 53(3): 469-76, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22292611

RESUMEN

PURPOSE: Previous work has shown that levetiracetam (LEV) binds the vesicular protein SV2A and reduces excitatory neurotransmitter release during trains of high-frequency activity, most likely by accessing its binding site through vesicular endocytosis into excitatory synaptic terminals. Because there are differences in excitatory and inhibitory transmitter release mechanisms, and there are suggestions that neurons differ in their SV2A expression, we were curious whether LEV also reduces inhibitory transmission. METHODS: We used patch-clamp recording from CA1 neurons in rat brain slices to quantify the effects of LEV on inhibitory postsynaptic currents (IPSCs). We were able to elicit pure IPSCs by stimulating inhibitory terminals close to neuronal soma and blocking excitatory postsynaptic currents with specific antagonists. KEY FINDINGS: We found that LEV reduces inhibitory currents in a frequency-dependent manner, with the largest relative effect on the later IPSCs in the highest frequency trains. However, in contrast to excitatory postsynaptic currents (EPSCs), LEV reduced IPSC trains after a briefer, 30 min incubation. When spontaneous activity during incubation was blocked with antagonists of excitatory transmission, LEV no longer reduced IPSCs. If slices were returned to LEV-free artificial cerebrospinal fluid (ACSF) after LEV incubation, but prior to recording, the IPSC reduction failed to appear. However, if synaptic activity was limited by treating with excitatory transmitter antagonists, after the initial LEV exposure, LEV still diminished trains of IPSC. The concentration required to diminish IPSC trains was lower than for EPSCs. SIGNIFICANCE: LEV exerts a qualitatively similar, frequency-dependent effect on both IPSCs and EPSCs. The much shorter latency for IPSC reduction is consistent with the greater levels of spontaneous inhibition in brain slices, supporting the hypothesis that vesicular uptake is necessary for the entry of LEVs into terminals. The vesicular entry of LEV resembles the cell entry pathways for tetanus and botulinum neurotoxins, but is unique for small, neuroactive drugs. Although the reduction of IPSC trains by LEV initially seems counterintuitive for an antiepileptic drug, there are multiple reasons that disruption of γ-aminobutyric acid (GABA) release could ultimately attenuate pathologic discharges.


Asunto(s)
Anticonvulsivantes/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Piracetam/análogos & derivados , Transmisión Sináptica/efectos de los fármacos , Animales , Región CA1 Hipocampal/fisiología , Levetiracetam , Inhibición Neural/fisiología , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Piracetam/farmacología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
10.
Sci Rep ; 12(1): 17300, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243751

RESUMEN

Protein kinases and their substrates form signaling networks partitioned across subcellular compartments to facilitate critical biological processes. While the subcellular roles of many individual kinases have been elucidated, a comprehensive assessment of the synaptic subkinome is lacking. Further, most studies of kinases focus on transcript, protein, and/or phospho-protein expression levels, providing an indirect measure of protein kinase activity. Prior work suggests that gene expression levels are not a good predictor of protein function. Thus, we assessed global serine/threonine protein kinase activity profiles in synaptosomal, nuclear, and cytosolic fractions from rat frontal cortex homogenate using peptide arrays. Comparisons made between fractions demonstrated differences in overall protein kinase activity. Upstream kinase analysis revealed a list of cognate kinases that were enriched in the synaptosomal fraction compared to the nuclear fraction. We identified many kinases in the synaptic fraction previously implicated in this compartment, while also identifying other kinases with little or no evidence for synaptic localization. Our results show the feasibility of assessing subcellular fractions with peptide activity arrays, as well as suggesting compartment specific activity profiles associated with established and novel kinases.


Asunto(s)
Péptidos , Proteínas Quinasas , Animales , Péptidos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Ratas , Serina/metabolismo , Fracciones Subcelulares/metabolismo , Treonina/metabolismo
11.
Hippocampus ; 21(11): 1152-6, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20857488

RESUMEN

Kv4.2-mediated A-type K(+) channels in dendrites act to dampen back-propagating action potentials, constrain coincidence detection, and modify synaptic properties. Because of naturally high concentrations in the hippocampus, genetic deletion of this protein results in enhanced CA1 dendritic excitability and a broader signal integration time window with potential implications for spatial learning. In this investigation, we tested Kv4.2 knockout mice in the Morris water maze to assess their spatial reference acquisition and recall abilities. These mice demonstrated prolonged latencies and pathlength to reach a hidden platform during learning trials that was correlated to a decreased use of spatial search strategies in favor of repetitive looping. Knockout mice also showed no preference for target areas in recall-based probe trials but were less impaired by a switch in the platform location at the start of reversal learning. We discuss the possibility that these behavior discrepancies may be attributable to an enhancement in synaptic plasticity and loss of selectivity among synaptic pathways bearing different information into the CA1 region. © 2010 Wiley Periodicals, Inc.


Asunto(s)
Aprendizaje/fisiología , Aprendizaje por Laberinto/fisiología , Canales de Potasio Shal/metabolismo , Conducta Espacial/fisiología , Potenciales de Acción/fisiología , Animales , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología
12.
Hippocampus ; 21(3): 288-97, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20087888

RESUMEN

Active conductances located and operating on neuronal dendrites are expected to regulate synaptic integration and plasticity. We investigate how Kv4.2-mediated A-type K(+) channels and Ca(2+) -activated K(+) channels are involved in the induction process of Hebbian-type plasticity that requires correlated pre- and postsynaptic activities. In CA1 pyramidal neurons, robust long-term potentiation (LTP) induced by a theta burst pairing protocol usually occurred within a narrow window during which incoming synaptic potentials coincided with postsynaptic depolarization. Elimination of dendritic A-type K(+) currents in Kv4.2(-/-) mice, however, resulted in an expanded time window, making the induction of synaptic potentiation less dependent on the temporal relation of pre- and postsynaptic activity. For the other type of synaptic plasticity, long-term depression, the threshold was significantly increased in Kv4.2(-/-) mice. This shift in depression threshold was restored to normal when the appropriate amount of internal free calcium was chelated during induction. In concert with A-type channels, Ca(2+) -activated K(+) channels also exerted a sliding effect on synaptic plasticity. Blocking these channels in Kv4.2(-/-) mice resulted in an even larger potentiation while by contrast, the depression threshold was shifted further. In conclusion, dendritic A-type and Ca(2+) -activated K(+) channels dually regulate the timing-dependence and thresholds of synaptic plasticity in an additive way.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Dendritas/metabolismo , Potenciación a Largo Plazo/fisiología , Canales de Potasio Calcio-Activados/metabolismo , Células Piramidales/metabolismo , Canales de Potasio Shal/metabolismo , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo
13.
Cereb Cortex ; 20(2): 393-403, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19515741

RESUMEN

To delineate the cellular mechanisms underlying the function of medial prefrontal cortex (mPFC) networks, it is critical to understand how synaptic inputs from various afferents are integrated and drive neuronal activity in this region. Using a newly developed slice preparation, we were able to identify a bundle of axons that contain extraneocortical fibers projecting to neurons in the prelimbic cortex. The anatomical origin and functional connectivity of the identified fiber bundle were probed by in vivo track tracing in combination with optic and whole-cell recordings of neurons in layers 2/3 and 5/6. We demonstrate that the identified bundle contains afferent fibers primarily from the ventral hippocampus but does not include contributions from the mediodorsal nucleus of the thalamus, amygdala, or lateral hypothalamus/medial forebrain bundle. Further, we provide evidence that activation of this fiber bundle results in patterned activity of neurons in the mPFC, which is distinct from that of laminar stimulation of either the deep layers 5/6 or the superficial layer 1. Evoked excitatory postsynaptic potentials are monosynaptic and glutamatergic and exhibit bidirectional changes in synaptic efficacy in response to physiologically relevant induction protocols. These data provide the necessary groundwork for the characterization of the hippocampal pathway projecting to the mPFC.


Asunto(s)
Hipocampo/citología , Vías Nerviosas/citología , Corteza Prefrontal/citología , Animales , Axones/fisiología , Axones/ultraestructura , Mapeo Encefálico , Señalización del Calcio , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes , Ácido Glutámico/metabolismo , Hipocampo/fisiología , Indicadores y Reactivos , Interneuronas/citología , Interneuronas/fisiología , Ratones , Vías Nerviosas/fisiología , Trazadores del Tracto Neuronal , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Corteza Prefrontal/fisiología , Células Piramidales/citología , Células Piramidales/fisiología , Transmisión Sináptica/fisiología , Imagen de Colorante Sensible al Voltaje
14.
Curr Protoc ; 1(9): e254, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34554657

RESUMEN

QIIME is a widely used, open-source microbiome analysis software package that converts raw sequence data into interpretable visualizations and statistical results. QIIME2 has recently succeeded QIIME1, becoming the most updated platform. The protocols in this article describe our effort in automating core functions of QIIME2, using datasets available at docs.qiime2.org. While these specific examples are microbial 16S rRNA gene sequences, our automation can be easily applied to other types of QIIME2 analysis. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparing files and folders Support Protocol 1: Preparing your data for QAP Support Protocol 2: Understanding automated options Basic Protocol 2: Importing into QIIME Basic Protocol 3: DADA2: Filtering, trimming, merging pairs Basic Protocol 4: Performing core metrics Basic Protocol 5: Sample filtering by metadata Basic Protocol 6: Alpha diversity metrics Basic Protocol 7: Cross-sectional beta diversity Basic Protocol 8: Longitudinal feature volatility Basic Protocol 9: Sample classification.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos , Automatización , Estudios Transversales , Péptidos y Proteínas de Señalización Intercelular , ARN Ribosómico 16S/genética
15.
Neuroscience ; 457: 74-87, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33422618

RESUMEN

Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice. Mice with tmem35a deletion exhibited thermal hyperalgesia and mechanical allodynia. Intrathecal administration of nicotine and the α7-specific agonist, PHA543613, produced analgesic responses to noxious heat and mechanical stimuli in tmem35a KO mice, respectively, suggesting residual expression of these receptors or off-target effects. Since NACHO is expressed only in neurons, these findings indicate that neuronal α7 nAChR in the spinal cord contributes to heat nociception. To further determine the molecular basis underlying the pain phenotype, we analyzed the spinal cord transcriptome. Compared to WT control, the spinal cord of tmem35a KO mice exhibited 72 differentially-expressed genes (DEGs). These DEGs were mapped onto functional gene networks using the knowledge-based database, Ingenuity Pathway Analysis, and suggests increased neuroinflammation as a potential contributing factor for the hyperalgesia in tmem35a KO mice. Collectively, these findings implicate a heightened inflammatory response in the absence of neuronal NACHO activity. Additional studies are needed to determine the precise mechanism by which NACHO in the spinal cord modulates pain.


Asunto(s)
Hiperalgesia , Receptores Nicotínicos , Animales , Canales Iónicos , Ratones , Chaperonas Moleculares/metabolismo , Neuronas/metabolismo , Nicotina , Receptores Nicotínicos/genética
16.
Front Neurosci ; 15: 678978, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276289

RESUMEN

Ketamine has been in use for over 50 years as a general anesthetic, acting primarily through blockade of N-methyl-D-aspartate receptors in the brain. Recent studies have demonstrated that ketamine also acts as a potent and rapid-acting antidepressant when administered at sub-anesthetic doses. However, the precise mechanism behind this effect remains unclear. We examined the diffusion properties of ketamine in brain tissue to determine their effects in in vitro studies related to the antidepressant action of ketamine. Brain slices from adult mice were exposed to artificial cerebrospinal fluid (aCSF) containing ∼17 µM ketamine HCl for varying amounts of time. The amount of ketamine within each slice was then measured by tandem high-performance liquid chromatography - mass spectrometry to characterize the diffusion of ketamine into brain tissue over time. We successfully modeled the diffusion of ketamine into brain tissue using a mono-exponential function with a time constant of τ = 6.59 min. This curve was then compared to a one-dimensional model of diffusion yielding a diffusion coefficient of approximately 0.12 cm2⋅s-1 for ketamine diffusing into brain tissue. The brain:aCSF partition coefficient for ketamine was determined to be approximately 2.76. Our results suggest that the diffusion properties of ketamine have a significant effect on drug concentrations achieved within brain tissue during in vitro experiments. This information is vital to determine the ketamine concentration necessary for in vitro slice preparation to accurately reflect in vivo doses responsible for its antidepressant actions.

17.
Mol Neurobiol ; 58(3): 1128-1144, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33098528

RESUMEN

Protein prenylation is a post-translational lipid modification that governs a variety of important cellular signaling pathways, including those regulating synaptic functions and cognition in the nervous system. Two enzymes, farnesyltransferase (FT) and geranylgeranyltransferase type I (GGT), are essential for the prenylation process. Genetic reduction of FT or GGT ameliorates neuropathology but only FT haplodeficiency rescues cognitive function in transgenic mice of Alzheimer's disease. A follow-up study showed that systemic or forebrain neuron-specific deficiency of GGT leads to synaptic and cognitive deficits under physiological conditions. Whether FT plays different roles in shaping neuronal functions and cognition remains elusive. This study shows that in contrast to the detrimental effects of GGT reduction, systemic haplodeficiency of FT has little to no impact on hippocampal synaptic plasticity and cognition. However, forebrain neuron-specific FT deletion also leads to reduced synaptic plasticity, memory retention, and hippocampal dendritic spine density. Furthermore, a novel prenylomic analysis identifies distinct pools of prenylated proteins that are affected in the brain of forebrain neuron-specific FT and GGT knockout mice, respectively. Taken together, this study uncovers that physiological levels of FT and GGT in neurons are essential for normal synaptic/cognitive functions and that the prenylation status of specific signaling molecules regulates neuronal functions.


Asunto(s)
Cognición/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Prenilación de Proteína , Transferasas Alquil y Aril/metabolismo , Animales , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Aprendizaje por Laberinto , Ratones , Aprendizaje Espacial , Memoria Espacial , Sinapsis/metabolismo
18.
Front Pharmacol ; 11: 590221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328997

RESUMEN

Recent research into the rapid antidepressant effect of subanesthetic doses of ketamine have identified a series of relevant protein cascades activated within hours of administration. Prior to, or concurrent with, these activation cascades, ketamine treatment generates dissociative and psychotomimetic side effects along with an increase in circulating glucocorticoids. In rats, we observed an over 3-fold increase in corticosterone levels in both serum and brain tissue, within an hour of administration of low dose ketamine (10 mg/kg), but not with (2R, 6R)-hydroxynorketamine (HNK) (10 mg/kg), a ketamine metabolite shown to produce antidepressant-like action in rodents without inducing immediate side-effects. Hippocampal tissue from ketamine, but not HNK, injected animals displayed a significant increase in the expression of sgk1, a downstream effector of glucocorticoid receptor signaling. To examine the role conscious sensation of ketamine's side effects plays in the release of corticosterone, we assessed serum corticosterone levels after ketamine administration while under isoflurane anesthesia. Under anesthesia, ketamine failed to increase circulating corticosterone levels relative to saline controls. Concurrent with its antidepressant effects, ketamine generates a release of glucocorticoids potentially linked to disturbing cognitive side effects and the activation of distinct molecular pathways which should be considered when attempting to delineate the molecular mechanisms of its antidepressant function.

19.
J Physiol ; 587(Pt 21): 5139-47, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19752120

RESUMEN

Cholinergic innervation of the prefrontal cortex is critically involved in arousal, learning and memory. Dysfunction of muscarinic acetylcholine receptors and their downstream signalling pathways has been identified in mental retardation. To assess the role played by the muscarinic receptors at the hippocampal-frontal cortex synapses, an important relay in information storage, we used a newly developed frontal slice preparation in which hippocampal afferent fibres are preserved. Transient activation of muscarinic receptors by carbachol results in a long-lasting depression of synaptic efficacy at the hippocampal but not cortical pathways or local circuitry. On the basis of a combination of electrophysiological, pharmacological and anatomical results, this input-specific muscarinic modulation can be partially attributed to the M2 subtype of muscarinic receptors, possibly through a combination of pre- and postsynaptic mechanisms.


Asunto(s)
Carbacol/farmacología , Hipocampo/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Receptor Muscarínico M2/metabolismo , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Hipocampo/efectos de los fármacos , Ratones , Inhibición Neural/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Receptor Muscarínico M2/agonistas , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA