Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 65(4): 699-714.e6, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28162934

RESUMEN

Ubiquitin (Ub) E1 initiates the Ub conjugation cascade by activating and transferring Ub to tens of different E2s. How Ub E1 cooperates with E2s that differ substantially in their predicted E1-interacting residues is unknown. Here, we report the structure of S. pombe Uba1 in complex with Ubc15, a Ub E2 with intrinsically low E1-E2 Ub thioester transfer activity. The structure reveals a distinct Ubc15 binding mode that substantially alters the network of interactions at the E1-E2 interface compared to the only other available Ub E1-E2 structure. Structure-function analysis reveals that the intrinsically low activity of Ubc15 largely results from the presence of an acidic residue at its N-terminal region. Notably, Ub E2 N termini are serine/threonine rich in many other Ub E2s, leading us to hypothesize that phosphorylation of these sites may serve as a novel negative regulatory mechanism of Ub E2 activity, which we demonstrate biochemically and in cell-based assays.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Sitios de Unión , Línea Celular , Humanos , Modelos Moleculares , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Relación Estructura-Actividad , Transfección , Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Actas Esp Psiquiatr ; 52(3): 317-324, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863039

RESUMEN

BACKGROUND: Craniocerebral injuries can cause inflammation and oxidative stress, and can have permanent effects on cognitive function. Moreover, over time, excessive expression of inflammatory factors and high levels of oxidative stress will be detrimental to recovery from craniocerebral injury and may exacerbate neurological damage, further damaging neurons and other cellular structures. In this study, we investigated changes in inflammation and stress indicators in patients with severe craniocerebral injuries, and analyzed associations with concurrent cognitive impairment. METHODS: 82 patients with severe craniocerebral injuries admitted to Longyou County People's Hospital during January 2022-June 2023 were selected for retrospective study. Levels of inflammatory factors and the degree of oxidative stress were recorded and compared between the acute and chronic phases. Inflammatory measures included interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP), and oxidative stress indicators included human cortisol (Cor), norepinephrine (NE), and superoxide dismutase (SOD). The patients' cognitive function was evaluated using the Mini-Mental State Examination (MMSE), and the incidence of cognitive impairment was assessed. Spearman's correlation was used to analyze associations between inflammatory and oxidative stress measures and MMSE scores; logistic regression was used to analyze the related factors affecting the patients' concurrent cognitive impairment; and the receiver operating characteristic (ROC) curve was used to test the predictive value of inflammatory and oxidative stress measures on the patients' concurrent cognitive impairment in the acute phase and the chronic phase. RESULTS: Patients had higher levels of IL-6, IL-10, TNF-α, CRP, Cor, and NE, and lower levels of SOD, in the acute phase compared to the chronic phase (p < 0.05). MMSE scores were higher in the acute phase than in the chronic phase (p < 0.05). A total of 50 cases were complicated by cognitive impairment, and the incidence of cognitive impairment was 60.98%. The levels of IL-6, IL-10, TNF-α, CRP, Cor, and NE in the chronic phase were positively correlated with the concurrent cognitive impairment, and the level of SOD was negatively correlated with the concurrent cognitive impairment (p < 0.05). Single-factor analysis showed that age and levels of IL-6, IL-10, TNF-α, CRP, Cor, and NE were higher in the cognitively impaired group than in the cognitively normal group, SOD levels were lower than in the cognitively normal group, and percentages of below-secondary school and frontal lobe damage were higher than those in the cognitively normal group (p < 0.05). Logistic regression analysis showed that below-secondary school, frontal lobe injury, higher levels of IL-6, IL-10, TNF-α, and CRP in the chronic phase, and lower levels of SOD in the chronic phase were all relevant factors affecting the patients' concurrent cognitive impairment. As shown by the ROC curve, the area under the curve (AUC) for the combination of indicators was 0.949, sensitivity was 0.980, and specificity was 0.844. CONCLUSIONS: The incidence of cognitive impairment is higher in patients with severe craniocerebral injury, and the levels of inflammation and oxidative stress, which are not conducive to recovery, are higher in patients in the acute stage. The risk of concurrent cognitive impairment is higher in patients with a lower level of literacy, frontal lobe injury, and high levels of inflammatory factors and oxidative stress in the chronic stage; these indicators, therefore, have a significant predictive effect on the prognosis of the patients.


Asunto(s)
Disfunción Cognitiva , Traumatismos Craneocerebrales , Inflamación , Estrés Oxidativo , Humanos , Disfunción Cognitiva/sangre , Disfunción Cognitiva/etiología , Disfunción Cognitiva/epidemiología , Femenino , Masculino , Inflamación/sangre , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Traumatismos Craneocerebrales/complicaciones , Traumatismos Craneocerebrales/sangre , Anciano , Interleucina-10/sangre , Proteína C-Reactiva/metabolismo
3.
Mol Cell ; 57(5): 925-935, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25620561

RESUMEN

Replication and transcription of influenza virus genome mainly depend on its RNA-dependent RNA polymerase (RdRP), composed of the PA, PB1, and PB2 subunits. Although extensively studied, the underlying mechanism of the RdRP complex is still unclear. Here we report the biochemical characterization of influenza RdRP subcomplex comprising PA, PB1, and N terminus of PB2, which exist as dimer in solution and can assemble into a tetramer state, regulated by vRNA promoter. Using single-particle cryo-electron microscopy, we have reconstructed the RdRP tetramer complex at 4.3 Å, highlighting the assembly and interfaces between monomers within the tetrameric structure. The individual RdRP subcomplex contains all the characterized motifs and appears as a cage-like structure. High-throughput mutagenesis profiling revealed that residues involved in the oligomer state formation are critical for viral life cycle. Our results lay a solid base for understanding the mechanism of replication of influenza and other negative-stranded RNA viruses.


Asunto(s)
Microscopía por Crioelectrón/métodos , Orthomyxoviridae/enzimología , ARN Polimerasa Dependiente del ARN/ultraestructura , Proteínas Virales/ultraestructura , Secuencia de Aminoácidos , Animales , Línea Celular , Células HEK293 , Humanos , Imagenología Tridimensional , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Orthomyxoviridae/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética
4.
J Biol Chem ; 293(47): 18337-18352, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30279270

RESUMEN

Ubiquitin (Ub) signaling plays a key regulatory role in nearly every aspect of eukaryotic biology and is initiated by E1 enzymes that activate and transfer Ub to E2 Ub-conjugating enzymes. Despite Ub E1's fundamental importance to the cell and its attractiveness as a target for therapeutic intervention in cancer and other diseases, its only available structural information is derived from yeast orthologs of human ubiquitin-like modifier-activating enzyme 1 (hUBA1). To illuminate structural differences between yeast and hUBA1 structures that might be exploited for the development of small-molecule therapeutics, we determined the first crystal structure of a hUBA1-Ub complex. Using structural analysis, molecular modeling, and biochemical analysis, we demonstrate that hUBA1 shares a conserved overall structure and mechanism with previously characterized yeast orthologs, but displays subtle structural differences, particularly within the active site. Computational analysis revealed four potential ligand-binding hot spots on the surface of hUBA1 that might serve as targets to inhibit hUBA1 at the level of Ub activation or E2 recruitment or that might potentially be used in approaches such as protein-targeting chimeric molecules. Taken together, our work enhances our understanding of the hUBA1 mechanism, provides an improved framework for the development of small-molecule inhibitors of UBA1, and serves as a stepping stone for structural studies that involve the enzymes of the human Ub system at the level of both E1 and E2.


Asunto(s)
Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Ubiquitina/química , Enzimas Activadoras de Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
5.
J Biol Chem ; 292(29): 12089-12099, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28572513

RESUMEN

E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl small ubiquitin-like modifier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics.


Asunto(s)
Modelos Moleculares , Procesamiento Proteico-Postraduccional , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/metabolismo , Bases de Datos de Proteínas , Disulfuros/química , Disulfuros/metabolismo , Disulfuros/farmacología , Activación Enzimática , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Ligandos , Mutación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Replegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homología Estructural de Proteína , Ubiquitina/química , Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética
6.
Acta Pharmacol Sin ; 38(8): 1184-1194, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28552915

RESUMEN

Uridine diphosphate-glucuronosyltransferase (UGT) 2B7 is expressed mostly in the human liver, lung and kidney and can transfer endogenous glucuronide group into its substrate and impact the pharmacological effects of several drugs such as estriol, AZT and morphine. UGT2B7 and its allelic variants can dimerize with the homologous enzymes UGT1A1 and UGT1A9, as well as their allelic variants, and then change their enzymatic activities in the process of substrate catalysis. The current study was designed to identify this mechanism using morphine as the substrate of UGT2B7. Single-recombinant allozymes, including UGT2B7*1 (wild type), UGT2B7*71S (A71S, 211G>T), UGT2B7*2 (H268Y, 802C>T), UGT2B7*5 (D398N, 1192G>A), and double-recombinant allozymes formed by the dimerization of UGT1A9*1 (wild type), UGT1A9*2 (C3Y, 8G>A), UGT1A9*3 (M33T, 98T>C), UGT1A9*5 (D256N, 766G>A), UGT1A1 (wild type) with its splice variant UGT1A1b were established and incubated with morphine in vitro. Each sample was analyzed with HPLC-MS/MS. All enzyme kinetic parameters were then measured and analyzed. From the results, the production ratio of its aberrant metabolism and subsequent metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), changes regioselectively. Double-recombinant allozymes exhibit stronger enzymatic activity catalyzing morphine than the single-recombinant alloyzymes. Compared to UGT2B7*1, UGT2B7*2 singles or doubles have lower Km values for M3G and M6G, whereas UGT2B7*5 allozymes perform opposite effects. The double allozymes of UGT1A9*2 or UGT1A9*5 with UGT2B7 tend to produce M6G. Interestingly, the majority of single or double allozymes significantly reduce the ratio of M3G to M6G. The UGT1A9*2-UGT2B7*1 double enzyme has the lowest M3G:M6G ratio, reflecting that more M6G would form in morphine glucuronide metabolism. This study demonstrates that UGT2B7 common SNPs and their dimers with UGT1A1 and UGT1A9 and their allelic variants can regioselectively affect the generation of two metabolites of morphine via altering the CLint ratios of M3G to M6G. These results may predict the effectiveness of morphine antinociception in individualized opioid treatment.


Asunto(s)
Glucurónidos/metabolismo , Glucuronosiltransferasa/metabolismo , Morfina/metabolismo , Alelos , Variación Genética , Glucuronosiltransferasa/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Recombinantes
7.
mBio ; 13(1): e0197921, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35041523

RESUMEN

A rare subset of HIV-infected individuals, termed elite controllers (ECs), can maintain long-term control over HIV replication in the absence of antiretroviral therapy (ART). To elucidate the biological mechanism of resistance to HIV replication at the molecular and cellular levels, we performed RNA sequencing and identified alternative splicing variants from ECs, HIV-infected individuals undergoing ART, ART-naive HIV-infected individuals, and healthy controls. We identified differential gene expression patterns that are specific to ECs and may influence HIV resistance, including alternative RNA splicing and exon usage variants of the CREM/ICER gene (cyclic AMP [cAMP]-responsive element modulator/inducible cAMP early repressors). The knockout and knockdown of specific ICER exons that were found to be upregulated in ECs resulted in significantly increased HIV infection in a CD4+ T cell line and primary CD4+ T cells. Overexpression of ICER isoforms decreased HIV infection in primary CD4+ T cells. Furthermore, ICER regulated HIV long terminal repeat (LTR) promoter activity in a Tat-dependent manner. Together, these results suggest that ICER is an HIV host factor that may contribute to the HIV resistance of ECs. These findings will help elucidate the mechanisms of HIV control by ECs and may yield a new approach for treatment of HIV. IMPORTANCE A small group of HIV-infected individuals, termed elite controllers (ECs), display control of HIV replication in the absence of antiretroviral therapy (ART). However, the mechanism of ECs' resistance to HIV replication is not clear. In our work, we found an increased expression of specific, small isoforms of ICER in ECs. Further experiments proved that ICER is a robust host factor to regulate viral replication. Furthermore, we found that ICER regulates HIV LTR promoter activity in a Tat-dependent manner. These findings suggest that ICER is related to spontaneous control of HIV infection in ECs. This study may help elucidate a novel target for treatment of HIV.


Asunto(s)
Infecciones por VIH , Humanos , Factores de Transcripción , AMP Cíclico/metabolismo , Línea Celular , Isoformas de Proteínas , Modulador del Elemento de Respuesta al AMP Cíclico/genética
8.
Nat Commun ; 13(1): 4880, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986001

RESUMEN

The E1 enzyme Uba6 initiates signal transduction by activating ubiquitin and the ubiquitin-like protein FAT10 in a two-step process involving sequential catalysis of adenylation and thioester bond formation. To gain mechanistic insights into these processes, we determined the crystal structure of a human Uba6/ubiquitin complex. Two distinct architectures of the complex are observed: one in which Uba6 adopts an open conformation with the active site configured for catalysis of adenylation, and a second drastically different closed conformation in which the adenylation active site is disassembled and reconfigured for catalysis of thioester bond formation. Surprisingly, an inositol hexakisphosphate (InsP6) molecule binds to a previously unidentified allosteric site on Uba6. Our structural, biochemical, and biophysical data indicate that InsP6 allosterically inhibits Uba6 activity by altering interconversion of the open and closed conformations of Uba6 while also enhancing its stability. In addition to revealing the molecular mechanisms of catalysis by Uba6 and allosteric regulation of its activities, our structures provide a framework for developing Uba6-specific inhibitors and raise the possibility of allosteric regulation of other E1s by naturally occurring cellular metabolites.


Asunto(s)
Enzimas Activadoras de Ubiquitina , Ubiquitina , Catálisis , Dominio Catalítico , Humanos , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo
9.
Nat Commun ; 12(1): 2370, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888705

RESUMEN

E1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1-E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1-E2-Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1-E2-ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1-E2-Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Dominio Catalítico , Cristalografía por Rayos X , Esterificación/fisiología , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Ubiquitina/química , Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/aislamiento & purificación , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/aislamiento & purificación
10.
Inhal Toxicol ; 21(12): 973-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19635035

RESUMEN

Benzene, toluene, xylene, and formaldehyde are well-known indoor air pollutants, especially after house decoration. They are also common pollutants in the working places of the plastic industry, chemical industry, and leather industry. It has been reported that these pollutants cause people to be irritated, sick, experience a headache, and be dizzy. They also have the potential to induce asthma, aplastic anemia, and leukemia, even cause abortion or fetus malformation in humans. In this study, the airborne toxicity of benzene, toluene, xylene, and formaldehyde to murine embryonic stem cells (mES cells) were tested using airborne exposure technique to evaluate the mES cell airborne exposure model on embryotoxicity prediction. Briefly, mES cells were cultured on Transwell inserts and were exposed to an airborne surrounding of test chemicals in a chamber for 1 h at 37 degrees C. Cytotoxicity was determined using the MTT assay after further culture for 18 h at 37 degrees C in normal medium. The airborne IC(50) (50% inhibition concentration) of benzene, toluene, xylene, and formaldehyde derived from the fitted dose-response curves were 17,400 +/- 1290, 16,000 +/- 250, 4680 +/- 500, and 620 +/- 310 ppm, respectively. Formaldehyde was found to be the compound most toxic to mES cells compared to benzene homologues. The toxicity data had good correlation with the in vivo data. The results showed that the mES airborne exposure model may be used to predict embryotoxicity of volatile organic compounds.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Contaminación del Aire Interior/efectos adversos , Células Madre Embrionarias/efectos de los fármacos , Solventes/toxicidad , Algoritmos , Animales , Cámaras de Exposición Atmosférica , Células Cultivadas , Colorantes , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Ratones , Sales de Tetrazolio , Tiazoles
11.
Nat Commun ; 9(1): 5145, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514846

RESUMEN

E1 enzymes activate ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) in the first step of Ub/Ubl conjugation cascades and represent potential targets for therapeutic intervention in cancer and other life-threatening diseases. Here, we report the crystal structure of the E1 enzyme for the Ubl SUMO in complex with a recently discovered and highly specific covalent allosteric inhibitor (COH000). The structure reveals that COH000 targets a cryptic pocket distinct from the active site that is completely buried in all previous SUMO E1 structures and that COH000 binding to SUMO E1 is accompanied by a network of structural changes that altogether lock the enzyme in a previously unobserved inactive conformation. These structural changes include disassembly of the active site and a 180° rotation of the catalytic cysteine-containing SCCH domain, relative to conformational snapshots of SUMO E1 poised to catalyze adenylation. Altogether, our study provides a molecular basis for the inhibitory mechanism of COH000 and its SUMO E1 specificity, and also establishes a framework for potential development of molecules targeting E1 enzymes for other Ubls at a cryptic allosteric site.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Regulación Alostérica , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Ubiquitina/química , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo
12.
Nat Commun ; 8(1): 211, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790309

RESUMEN

RING-in-between-RING (RBR) ubiquitin (Ub) E3 ligases function with Ub E2s through a RING/HECT hybrid mechanism to conjugate Ub to target proteins. Here, we report the crystal structure of the RBR E3, HHARI, in complex with a UbcH7 ~ Ub thioester mimetic which reveals the molecular basis for the specificity of this cognate E2/RBR E3 pair. The structure also reveals mechanistically important conformational changes in the RING1 and UBA-like domains of HHARI that accompany UbcH7 ~ Ub binding and provides a molecular basis by which HHARI recruits E2 ~ Ub in an 'open' conformation. In addition to optimally functioning with an E2 that solely performs transthiolation, our data suggests that HHARI prevents spurious discharge of Ub from E2 to lysine residues by: (1) harboring structural elements that block E2 ~ Ub from adopting a 'closed' conformation and (2) participating in contacts to ubiquitin that promote an open E2 ~ Ub conformation.HHARI is a RING-in-between-RING (RBR) ubiquitin (Ub) E3 ligase. Here the authors present the crystal structure of HHARI with the UbcH7 ~ Ub thioester intermediate mimetic, which reveals that HHARI binds this E2 ~ Ub in an open conformation and explains the specificity of this cognate RBR E3/E2 pair.


Asunto(s)
Proteínas Portadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Dominio Catalítico , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas
13.
Sci Rep ; 6: 23763, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27025983

RESUMEN

Uridine diphosphate glucuronosyltransferase 1A (UGT1A) is a major phase II drug-metabolism enzyme superfamily involved in the glucuronidation of endobiotics and xenobiotics in humans. Many polymorphisms in UGT1A genes are reported to inhibit or decrease UGT1A activity. In this study, two UGT1A1 allozymes, UGT1A1 wild-type and a splice mutant, as well as UGT1A9 wild-type and its three UGT1A9 allozymes, UGT1A9*2(C3Y), UGT1A9*3(M33T), and UGT1A9*5(D256N) were single- or double-expressed in a Bac-to-Bac expression system. Dimerization of UGT1A1 or UGT1A9 allozymes was observed via fluorescence resonance energy transfer (FRET) and co-immunoprecipitation analysis. SNPs of UGT1A altered the ability of protein-protein interaction, resulting in differential FRET efficiencies and donor-acceptor r distances. Dimerization changed the chemical regioselectivity, substrate-binding affinity, and enzymatic activity of UGT1A1 and UGT1A9 in glucuronidation of quercetin. These findings provide molecular insights into the consequences of homozygous and heterozygous UGT1A1 and UGT1A9 allozymes expression on quercetin glucuronidation.


Asunto(s)
Glucuronosiltransferasa/química , Quercetina/química , Animales , Glicosilación , Humanos , Isoenzimas/química , Cinética , Multimerización de Proteína , Células Sf9 , Spodoptera , Especificidad por Sustrato , UDP Glucuronosiltransferasa 1A9
14.
Sci Rep ; 6: 34450, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27857056

RESUMEN

Human UDP-glucuronosyltransferases (UGTs) play a pivotal role in phase II metabolism by catalyzing the glucuronidation of endobiotics and xenobiotics. The catalytic activities of UGTs are highly impacted by both genetic polymorphisms and oligomerization. The present study aimed to assess the inter-isoform hetero-dimerization of UGT1A1, 1A9, and 2B7, including the wild type (1A1*1, 1A9*1, and 2B7*1) and the naturally occurring (1A1*1b, 1A9*2/*3/*5, and 2B7*71S/*2/*5) variants. The related enzymes were double expressed in Bac-to-Bac systems. The fluorescence resonance energy transfer (FRET) technique and co-immunoprecipitation (Co-IP) revealed stable hetero-dimerization of UGT1A1, 1A9, and 2B7 allozymes. Variable FRET efficiencies and donor-acceptor distances suggested that genetic polymorphisms resulted in altered affinities to the target protein. In addition, the metabolic activities of UGTs were differentially altered upon hetero-dimerization via double expression systems. Moreover, protein interactions also changed the regioselectivity of UGT1A9 for querectin glucuronidation. These findings provide in-depth understanding of human UGT dimerization as well as clues for complicated UGT dependent metabolism in humans.


Asunto(s)
Glucuronosiltransferasa/química , Multimerización de Proteína , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , UDP Glucuronosiltransferasa 1A9
15.
Sci Transl Med ; 8(348): 348ra97, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27440728

RESUMEN

Renal cell carcinoma (RCC) is known for its multidrug resistance. Using data obtained from the cancer transcriptome database Oncomine and the proteome database The Human Protein Atlas, we identified the repression of organic cation transporter OCT2 as a potential factor contributing to oxaliplatin resistance in RCC. By analyzing OCT2 expression in collected patient tissues and commercial tissue microarray specimens, we demonstrated OCT2 repression in RCC at both transcription and protein levels. Epigenetic analysis revealed that the repressed OCT2 promoter in RCC is characterized by hypermethylated CpG islands and the absence of H3K4 methylation. Further mechanistic studies showed that DNA hypermethylation blocked MYC activation of OCT2 by disrupting its interaction with the E-Box motif, which prevented MYC from recruiting MLL1 to catalyze H3K4me3 at the OCT2 promoter and resulted in repressed OCT2 transcription. Targeting this mechanism, we designed a sequential combination therapy and demonstrated that epigenetic activation of OCT2 by decitabine sensitizes RCC cells to oxaliplatin both in vitro and in xenografts. Our study highlights the potential of translating "omics" data into the development of targeted therapies.


Asunto(s)
Carcinoma de Células Renales/genética , Metilación de ADN/genética , Transportador 2 de Cátion Orgánico/metabolismo , Compuestos Organoplatinos/farmacología , Islas de CpG/efectos de los fármacos , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Epigenómica/métodos , Humanos , Inmunohistoquímica , Técnicas In Vitro , Transportador 2 de Cátion Orgánico/genética , Oxaliplatino , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Análisis de Matrices Tisulares
16.
Biochem Pharmacol ; 95(1): 58-70, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25770680

RESUMEN

Most human UDP-glucuronosyltransferase (UGT; EC 2.4.1.17) genes contain non-synonymous single nucleotide polymorphisms (nsSNPs) which cause amino acid substitutions. Allelic variants caused by nsSNPs may exhibit absent or reduced enzyme activity. UGT2B7 is one of the most important UGTs that glucuronidates abundant endobiotics and xenobiotics, such as estriol, morphine, and anticancer drugs. Three nsSNPs, UGT2B7*71S (211G>T), UGT2B7*2 (802C>T) and UGT2B7*5 (1192G>A) are observed in the UGT2B7 gene, and they code for allozymes UGT2B7*71S (A71S), UGT2B7*2 (H268Y), and UGT2B7*5 (D398N). UGT2B7 has been observed to form oligomers that affect its enzymatic activity and in this study, we investigated protein-protein interactions among UGT2B7 allozymes wild type (WT), A71S, H268Y and D398N, by performing a systematic quantitative fluorescence resonance energy transfer (FRET) analysis in combination with co-immunoprecipitation assay. Quantitative FRET analysis revealed that UGT2B7 allozymes formed homo- and hetero-dimers and showed distinct features in donor-acceptor distances. Both codon 71 and codon 268 in the N-terminal domain were involved in the dimeric interaction. Co-immunoprecipitation experiments also proved that UGT2B7 allozymes formed stable dimers. The glucuronidation activities of homo- and hetero-dimers were further tested with zidovudine as the substrate. An increase in activity was observed when WT hetero-dimerized with A71S compared with homo-dimers, while both H268Y and D398N impaired the activity of WT and A71S by forming hetero-dimers. In addition, zidovudine glucuronidation activity is associated with FRET distance. These findings provide insights into the consequences of amino acid substitution in UGT2B7 on zidovudine glucuronidation and the association between protein-protein interaction and glucuronidation activity.


Asunto(s)
Alelos , Dimerización , Variación Genética/efectos de los fármacos , Glucurónidos/metabolismo , Glucuronosiltransferasa/genética , Zidovudina/farmacología , Animales , Línea Celular , Variación Genética/fisiología , Humanos , Células Sf9 , Spodoptera
18.
Biochem Pharmacol ; 82(11): 1757-63, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21856293

RESUMEN

Flurbiprofen (FPF), available commercially as a racemic mixture, is a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs) with known stereoselective glucuronidation. The major enzyme catalyzing this conjugation reaction is UDP-glucuronosyltransferase (UGT) 2B7, with minor contributions by UGT1A9. This study examines the role of the genetic variants of UGT2B7 and 1A9 enzymes involved in the formation of acyl glucuronides (FPFGs). Variants caused by three single nucleotide polymorphisms (SNPs) (A71S, 211G>T; H268Y, 802C>T; and D398N, 1192G>A) in UGT2B7 and three SNPs (C3Y, 8G>A; M33T, 98T>C; D256N, 766G>A) in UGT1A9 showed activity changes toward different substrates. However the functional impacts of these SNPs on chiral substrates were not examined. Upon stable expression in Bac-to-Bac system, UGT2B7*71S (A(71)S), UGT2B7*2 (H(268)Y) and UGT2B7*5 (D(398)N) were all associated with a decrease in the formation of FPFGs. Compared with UGT2B7*1 (wild-type), UGT2B7*71S exhibited a >2-fold lower intrinsic clearance mainly by altered capacities (V(max)). Furthermore, a >14-fold decreased intrinsic clearance of the *1 protein was produced by UGT2B7*2 and UGT2B7*5. However, no significantly stereoselective difference for the formation of (R)- and (S)-FPFG was found among these UGT2B7 allozymes. UGT1A9*2 (C(3)Y) exhibited a higher V(max) (3.2-fold), K(m) (2.1-fold) and intrinsic clearance (1.6-fold) toward (S)-FPF than UGT1A9*1 (wild-type). UGT1A9*3 (M(33)T) almost lost the catalytic activity to FPF. A significantly stereoselective difference on the glucuronidation of rac-FPF was seen between the two variants compared with the wild type of UGT1A9.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacocinética , Flurbiprofeno/farmacocinética , Glucurónidos/metabolismo , Glucuronosiltransferasa/genética , Antiinflamatorios no Esteroideos/química , Flurbiprofeno/química , Glucurónidos/química , Glucuronosiltransferasa/fisiología , Humanos , Polimorfismo de Nucleótido Simple , Estereoisomerismo , UDP Glucuronosiltransferasa 1A9
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA