Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 312(Pt 1): 137101, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36334753

RESUMEN

Biochar plays an important role in reducing the harmful environmental effects of inorganic nitrogen (N) fertilizers on agroecosystems, but the the impact mechanisms of biochar combined with N fertilizers on soil microorganisms are not clear enough. In this study, high-throughput sequencing was used to study the influences of three N fertilizer levels (0 (N0), 90 (N90) and 120 (N120) kg ha-1) and two biochar levels (0 (B0) and 20 (B20) t ha-1) on the soil microbial community and symbiotic network among microbial taxa in wheat fields. Compared to the control (B0N0), N fertilizer alone or combined with biochar significantly increased soil total N, available N, and organic matter in topsoil (0-20 cm), and the same results were found only in B20N120 treatment in subsoil (20-40 cm). In addition, bacterial and fungal diversity in topsoil were significantly increased and decreased by all N and biochar treatments, respectively. Moreover, soil bacterial and fungal community compositions also were also changed by N and biochar. Furthermore, biochar weakened the competition and cooperation among microorganisms in topsoil and subsoil, and the keystone species of networks were also changed by biochar. Redundancy analysis showed that soil total N, available N, available P, available K and pH were the main environmental factors driving the changes in bacterial and fungal community structures. These data indicated that the addition of N fertilizer and biochar could improve soil fertility by maintaining the stability of microbial community structures, which can provide reasonable guidance for the sustainable development of agriculture, such as maintaining dryland production.


Asunto(s)
Microbiota , Suelo , Suelo/química , Fertilizantes/análisis , Nitrógeno/análisis , Microbiología del Suelo , Carbón Orgánico/química , Bacterias
2.
Sci Total Environ ; 817: 152878, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998744

RESUMEN

Localized fertilization of phosphorus has potential benefits in achieving higher crop productivity and nutrient use efficiency, but the underlying biological mechanisms of interactions between soil microorganisms and related metabolic cycle remain largely to be recognized. Here, we combined microbiology with non-target metabolomics to explore how P fertilizer levels and fertilization patterns affect wheat soil microbial communities and metabolic functions based on high-throughput sequencing and UPLC-MS/MS platforms. The results showed P fertilizer decreased the diversity of bacterial 16S rRNA genes and fungal ITS genes, and it did significantly change both soil bacterial and fungal overall community structures and compositions. The P levels and patterns also interfered with complexity of soil bacterial and fungal symbiosis networks. Moreover, metabolomics analysis showed that P fertilizer significantly changed soil metabolite spectrum, and the differential metabolites were significantly enriched to 7 main metabolic pathways, such as arginine and proline metabolism, biosynthesis of plant hormones, amino acids, plant secondary metabolites, and alkaloids derived from ornithine. Additionally, microbes also were closely related to the accumulation of metabolites through correlation analysis. Our results indicated that localized appropriate phosphorus fertilizer plays an important role in regulating soil microbial metabolism, and their interactions in soil providing valuable information for understanding how the changed phosphorus management practices affect the complex biological processes and the adaption capacity of plants to environments.


Asunto(s)
Fertilizantes , Suelo , Cromatografía Liquida , Granjas , Fertilizantes/análisis , Metabolómica , Fósforo/química , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo , Espectrometría de Masas en Tándem
3.
Sci Total Environ ; 750: 142337, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33182195

RESUMEN

Extreme climate events undoubtedly have essential impacts on ecosystem gross primary productivity (GPP), but the global spatio-temporal patterns of GPP responses to climate extremes are unclear. In this study, we analyzed the responses of GPP to temperature and precipitation extremes during historical (1901-2016) and future (2006-2100) periods using climate extreme indices (CEIs) developed by the Expert Team on Climate Change Detection and Indices. Eight temperature-related CEIs and eight precipitation-related CEIs were used for this analysis, along with three future greenhouse gas concentration trajectory scenarios generated by the IPCC: RCP 2.6, RCP 4.5, and RCP 8.5. Our results show that under RCP 4.5 and RCP 8.5, most climate extremes are increasing from the historical period into the future, indicating a warming globe with more frequent and more intense extreme climate events. But the increasing rate is only persistently enhanced with time under scenario RCP 8.5. GPP shows a continuous negative relationship with cold CEIs and positive relationship with wet CEIs from the historical period into the future. In all zonal scales, the changed magnitude of GPP responds strongly to extreme value-related temperature extremes under different scenarios. However, the precipitation-related extremes with the strongest GPP response are various in different regions. In the future, GPP is most sensitive to temperature extremes in upper northern latitudes and in high-altitude regions (e.g., Qinghai-Tibet Plateau) and to precipitation extremes in the tropical zone. This study may provide a basis for predicting how GPP responds to climate extremes and explaining the underlying changes in the carbon cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA