Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(13): 21521-21541, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381249

RESUMEN

Non-contact temperature measurement for a solar telescope mirror is critical for improving the mirror seeing and thermal deformation of solar telescopes, a long-standing challenge in astronomy. This challenge arises from the telescope mirror's inherent weak thermal radiation, often overwhelmed by reflected background radiations due to its high reflectivity. In this work, an infrared mirror thermometer (IMT) is equipped with a thermally-modulated reflector, and a measurement method based on an equation for extracting mirror radiation (EEMR) has been developed for probing the accurate radiation and temperature of the telescope mirror. Using this approach, we can extract the mirror radiation from the instrumental background radiation via the EEMR. This reflector has been designed to amplify the mirror radiation signal incident on the infrared sensor of IMT, while inhibiting the radiation noise from the ambient environment. In addition, we also propose a set of evaluation methods for IMT performance based on EEMR. The results reveal that the temperature measurement accuracy of IMT to the solar telescope mirror using this measurement method can be achieved better than ±0.15°C.

2.
Opt Express ; 31(11): 17148-17164, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37381456

RESUMEN

Astronomical seeing parameters calculated based on the Kolmogorov turbulence model cannot fully evaluate the effect of the natural convection (NC) above a solar telescope mirror on the image quality, as the convective air motions and temperature variations of the NC are significantly different from the Kolmogorov turbulence. In this work, a new method based on the transient behaviors and frequency characteristics of NC-related wavefront error (WFE) are investigated in detail and used to evaluate the image quality degradation caused by a heated telescope mirror, aiming to make up for the deficiency of astronomical seeing parameters with the conventional method in evaluating the image quality degradation. Transient computational fluid dynamics (CFD) simulations and WFE calculations based on discrete sampling and ray segmentation are performed to quantitatively evaluate the transient behaviors of the NC-related WFE. It clearly exhibits apparent oscillatory characteristics, which are coupled by main oscillation with low frequencies and minor oscillation with high frequencies. Moreover, the generation mechanisms of two types of oscillations are studied. The conspicuous oscillation frequencies of the main oscillation caused by heated telescope mirrors with varying dimensions are primarily lower than 1 Hz, suggesting that active optics may be adopted to correct the main oscillation of NC-related WFE while the adaptive optics may correct the minor oscillation. Furthermore, a mathematical relationship between WFE, temperature rise, and mirror diameter is derived, revealing a significant correlation between WFE and mirror diameter. Our work suggests the transient NC-related WFE should be considered as one of the critical supplements to the mirror seeing evaluation.

3.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904944

RESUMEN

The ultraviolet (UV) photodetector has found many applications, ranging from optical communication to environmental monitoring. There has been much research interest in the development of metal oxide-based UV photodetectors. In this work, a nano-interlayer was introduced in a metal oxide-based heterojunction UV photodetector to enhance the rectification characteristics and therefore the device performance. The device, which consists of nickel oxide (NiO) and zinc oxide (ZnO) sandwiching an ultrathin dielectric layer of titanium dioxide (TiO2), was prepared by radio frequency magnetron sputtering (RFMS). After annealing, the NiO/TiO2/ZnO UV photodetector exhibited a rectification ratio of 104 under UV irradiation of 365 nm at zero bias. The device also demonstrated a high responsivity of 291 A/W and a detectivity of 6.9 × 1011 Jones at +2 V bias. Such a device structure provides a promising future for metal oxide-based heterojunction UV photodetectors in a wide range of applications.

4.
Opt Express ; 30(12): 21349-21361, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36224856

RESUMEN

Versatile applications have driven a desire for dual-band detection that enables seeing objects in multiple wavebands through a single photodetector. In this paper, a concept of using graphene/p-GaN Schottky heterojunction on top of a regular AlGaN-based p-i-n mesa photodiode is reported for achieving solar-/visible-blind dual-band (275 nm and 365 nm) ultraviolet photodetector with high performance. The highly transparent graphene in the front side and the polished sapphire substrate at the back side allows both top illumination and back illumination for the dual band detection. A system limit dark current of 1×10-9 A/cm2 at a negative bias voltage up to -10 V has been achieved, while the maximum detectivity obtained from the detection wavebands of interests at 275 nm and 365 nm are ∼ 9.0 ×1012 cm·Hz1/2/W at -7.5 V and ∼8.0 × 1011 cm·Hz1/2/W at +10 V, respectively. Interestingly, this new type of photodetector is dual-functional, capable of working as either photodiode or photoconductor, when switched by simply adjusting the regimes of bias voltage applied on the devices. By selecting proper bias, the device operation mode would switch between a high-speed photodiode and a high-gain photoconductor. The device exhibits a minimum rise time of ∼210 µs when working as a photodiode and a maximum responsivity of 300 A/W at 6 µW/cm2 when working as a photoconductor. This dual band and multi-functional design would greatly extend the utility of detectors based on nitrides.

5.
Front Bioeng Biotechnol ; 10: 902312, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646877

RESUMEN

Using photothermal therapy to treat cancer has become an effective method, and the design of photothermal agents determines their performance. However, due to the major radiative recombination of a photogenerated electron in photothermal materials, the photothermal performance is weak which hinders their applications. In order to solve this issue, preventing radiative recombination and accelerating nonradiative recombination, which can generate heat, has been proved as a reasonable way. We demonstrated a Cu2MoS4@MXene nanocomposite with an obviously enhanced photothermal conversion efficiency (η = 87.98%), and this improvement can be attributed to the electron migration. Then, a mechanism is proposed based on the electron transfer regulatory effect and the localized surface plasmon resonance effect, which synergistically promote nonradiative recombination and generate more heat. Overall, our design strategy shows a way to improve the photothermal performance of Cu2MoS4, and this method can be extended to other photothermal agents to let them be more efficient in treating cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA