RESUMEN
Cell therapeutics hold tremendous regenerative potential and the therapeutic effect depends on the effective delivery of cells. However, current cell delivery carriers with unsuitable cytocompatibility and topological structure demonstrate poor cell viability during injection. Therefore, porous shape-memory cryogel microspheres (CMS) are prepared from methacrylated gelatin (GelMA) by combining an emulsion technique with gradient-cooling cryogelation. Pore sizes of the CMS are adjusted via the gradient-cooling procedure, with the optimized pore size (15.5 ± 6.0 µm) being achieved on the 30-min gradient-cooled variant (CMS-30). Unlike hydrogel microspheres (HMS), CMS promotes human bone marrow stromal cell (hBMSC) and human umbilical vein endothelial cell (HUVEC) adhesion, proliferated with high levels of stemness for 7 d, and protects cells during the injection process using a 26G syringe needle. Moreover, CMS-30 enhances the osteogenic differentiation of hBMSCs in osteoinductive media. CMS can serve as building blocks for delivering multiple cell types. Here, hBMSC-loaded and HUVEC-loaded CMS-30, mixed at a 1:1 ratio, are injected subcutaneously into nude mice for 2 months. Results show the development of vascularized bone-like tissue with high levels of OCN and CD31. These findings indicate that GelMA CMS of a certain pore size can effectively deliver multiple cells to achieve functional tissue regeneration.
Asunto(s)
Gelatina , Osteogénesis , Animales , Regeneración Ósea , Criogeles , Ratones , Ratones Desnudos , MicroesferasRESUMEN
Bone defect repair, especially in terms of infection, remains a big challenge in clinical therapy. To meet clinical requirements, the dual-functional strategy including antibacterial activity and strong osteogenesis effect is a promising approach in bone tissue engineering. In the present study, bioresorbable porous-structured microspheres are fabricated from amphiphilic block copolymer composed of poly(l-lactide) and poly(ethyl glycol) blocks. After being surface coated with mussel-inspired polydopamine, the microspheres are loaded with nanosilver via reduction of silver nitrate and apatite via biomineralization in sequence. The resulting composite microspheres are systematically characterized by in vitro coculturing with rat bone mesenchymal stromal cells and Staphylococcus aureus to evaluate cytotoxicity and antibacterial activity. In vivo evaluation is carried out by filling the composite microspheres into infected cranial defects in a rat model. The primary results indicate that the dual-purpose microspheres have the capacity to defeat infection while promoting bone regeneration.
Asunto(s)
Regeneración Ósea/efectos de los fármacos , Microesferas , Nanopartículas/administración & dosificación , Osteogénesis/efectos de los fármacos , Animales , Apatitas/administración & dosificación , Apatitas/química , Regeneración Ósea/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Lactatos/administración & dosificación , Lactatos/química , Nanopartículas/química , Osteogénesis/fisiología , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Porosidad , Ratas , Plata/administración & dosificación , Plata/química , Propiedades de Superficie , Ingeniería de TejidosRESUMEN
Polymethyl methacrylate (PMMA) based biomaterials have been widely utilized in clinics. However, currently, PMMA catalyzed by benzoyl peroxide (BPO) exhibits disquieting disadvantages including an exothermic polymerization reaction and a lack of bioactivity. Here, we first designed three industrial-scale synthesis methods for high-purity butoxydibutylborane (BODBB), achieving purity levels greater than 95% (maximum: 97.6%) and ensuring excellent fire safety. By utilizing BODBB as a catalyst, the highest polymerization temperature of PMMA bone cement (PMMA-BODBB) reached only 36.05 °C, ensuring that no thermal damage occurred after implantation. Compared to PMMA catalyzed by BPO and partially oxidized tributylborane (TBBO, catalyst of Super Bond C&B), PMMA-BODBB exhibited superior cell adhesion, proliferation, and osteogenesis, attributed to the reduced release of free radicals and toxic monomer, and moderate bioactive boron release. After injection into a 5 mm defect in the rat cranial bone, PMMA-BODBB demonstrated the highest level of osteointegration. This work not only presents an industrial-scale synthesis of high-purity BODBB, but also offers an innovative PMMA biomaterial system with intrinsic biocompatibility and osseointegration, paving the way for the next generation of PMMA-based biomaterials with broader applications.
Asunto(s)
Materiales Biocompatibles , Cementos para Huesos , Oseointegración , Polimerizacion , Polimetil Metacrilato , Polimetil Metacrilato/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Catálisis , Ratas , Cementos para Huesos/química , Cementos para Huesos/síntesis química , Oseointegración/efectos de los fármacos , Boranos/química , Boranos/síntesis química , Proliferación Celular/efectos de los fármacos , Ensayo de Materiales , Ratas Sprague-Dawley , Ratones , Adhesión Celular/efectos de los fármacosRESUMEN
As a major cause of clinical chronic infection, microbial biofilms/microcolonies in host tissues essentially live in 3D-constrained microenvironments, which potentially modulate their spatial self-organization and morphodynamics. However, it still remains unclear whether and how mechanical cues of 3D confined microenvironments, for example, extracellular matrix (ECM) stiffness, exert an impact on antibiotic resistance of bacterial biofilms/microcolonies. With a high-throughput antibiotic sensitivity testing (AST) platform, it is revealed that 3D ECM rigidities greatly modulate their resistance to diverse antibiotics. The microcolonies in 3D ECM with human tissue-specific rigidities varying from 0.5 to 20 kPa show a ≈2-10â¯000-fold increase in minimum inhibitory concentration, depending on the types of antibiotics. The authors subsequently identified that the increase in 3D ECM rigidities leads to the downregulation of the tricarboxylic acid (TCA) cycle, which is responsible for enhanced antibiotic resistance. Further, it is shown that fumarate, as a potentiator of TCA cycle activity, can alleviate the elevated antibiotic resistance and thus remarkably improve the efficacy of antibiotics against bacterial microcolonies in 3D confined ECM, as confirmed in the chronic infection mice model. These findings suggest fumarate can be employed as an antibiotic adjuvant to effectively treat infections induced by bacterial biofilms/microcolonies in a 3D-confined environment.
Asunto(s)
Ciclo del Ácido Cítrico , Infección Persistente , Humanos , Animales , Ratones , Antibacterianos/farmacología , Bacterias , Farmacorresistencia Microbiana , Biopelículas , Matriz ExtracelularRESUMEN
Organic-inorganic composites with high specific surface area and osteoinductivity provide a suitable microenvironment for cell ingrowth and effective ossification, which could greatly promote bone regeneration. Here, we report gelatin methacryloyl (GelMA) cryogel microspheres that are reinforced with hydroxyapatite (HA) nanowires and calcium silicate (CS) nanofibers to achieve the goal. The prepared composite cryogel microspheres with open porous structure and rough surface greatly facilitate cell anchoring, simultaneously exhibiting excellent injectability. Compared to the only HA- or CS-containing counterparts, the GelMA cryogel microspheres composited with HA:CS (termed as GMHC) achieve sustained release of bioactive Ca, P, and Si elements, which are conducive to osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs). These composite microspheres can prevent from forming peralkalic conditions, which is beneficial for cell growth. After injection of cryogel microspheres into rat calvarial defects, neo-bone tissue grows into their pores, showing tight integration. The embedded bioceramic components significantly promote bone regeneration, with the GMHC achieving the best regenerative outcomes. Promisingly, porous organic-inorganic composite cryogel microspheres, with high specific surface area, biodegradability, and osteoinductivity, can act as injectable microscaffolds to repair bone defects with enhanced efficiency, which may widen the scaffold strategy for bone tissue engineering.
Asunto(s)
Criogeles , Osteogénesis , Ratas , Animales , Criogeles/química , Andamios del Tejido/química , Regeneración Ósea , Huesos , Durapatita/química , Ingeniería de Tejidos , MicroesferasRESUMEN
Biological receptor-ligand adhesion governed by mammalian cells involves a series of mechanochemical processes that can realize reversible, loading rate-dependent specific interfacial bonding, and even exhibit a counterintuitive behavior called catch bonds that tend to have much longer lifetimes when larger pulling forces are applied. Inspired by these catch bonds, we designed a hydrogen bonding-meditated hydrogel made from acrylic acid-N-acryloyl glycinamide (AA-NAGA) copolymers and tannic acids (TA), which formed repeatable specific adhesion to polar surfaces in an ultra-fast and robust way, but hardly adhered to nonpolar materials. It demonstrated up to five-fold increase in shear adhesive strength and interfacial adhesive toughness with external loading rates varying from 5 to 500 mm min-1. With a mechanochemical coupling model based on Monte Carlo simulations, we quantitatively revealed the nonlinear dependence of rate-sensitive interfacial adhesion on external loading, which was in good agreement with the experimental data. Likewise, the developed hydrogels were biocompatible, possessed antioxidant and antibacterial properties and promoted wound healing. This work not only reports a stimuli-responsive hydrogel adhesive suitable for multiple biomedical applications, but also offers an innovative strategy for bionic designs of smart hydrogels with loading rate-sensitive specific adhesion for various emerging areas including flexible electronics and soft robotics.
RESUMEN
Cells living in geometrically confined microenvironments are ubiquitous in various physiological processes, e.g., wound closure. However, it remains unclear whether and how spatially geometric constraints on host cells regulate bacteria-host interactions. Here, we reveal that interactions between bacteria and spatially constrained cell monolayers exhibit strong spatial heterogeneity, and that bacteria tend to adhere to these cells near the outer edges of confined monolayers. The bacterial adhesion force near the edges of the micropatterned monolayers is up to 75 nN, which is ~3 times higher than that at the centers, depending on the underlying substrate rigidities. Single-cell RNA sequencing experiments indicate that spatially heterogeneous expression of collagen IV with significant edge effects is responsible for the location-dependent bacterial adhesion. Finally, we show that collagen IV inhibitors can potentially be utilized as adjuvants to reduce bacterial adhesion and thus markedly enhance the efficacy of antibiotics, as demonstrated in animal experiments.
Asunto(s)
Adhesión Bacteriana , Colágeno , Animales , Adhesión Bacteriana/fisiología , Colágeno/metabolismo , Fenómenos Mecánicos , Bacterias/metabolismo , Adhesión CelularRESUMEN
Oral potentially malignant disorders (OPMDs) are precursor lesions with an increased risk of malignant transformation. Topical photodynamic therapy (PDT) mediated by 5-aminolevulinic acid (ALA) (ALA-PDT) is a promising therapeutic method in the treatment of OPMDs. However, the clinical application of topical ALA-PDT is restricted by several limitations, including low delivery efficiency, poor comfort, and easy influence by saliva. Here, we designed a highly adhesion-strength dry polyacrylic acid (PAA)-chitosan (CHI)-ALA interpenetrating network hydrogel (PACA) patch after investigating the spatiotemporal dynamics of ALA drug delivery via diffusion-based finite-element models. The PACA patch could adhere to the moist oral mucosa fast and stably and deliver ALA. PACA hydrogel-mediated PDT (PACA-PDT) effectively improved OPMDs in vitro and in a hamster oral carcinogenesis model. In particular, we conducted a trial to recruit 60 OPMD volunteers to demonstrate the feasibility and comfort of the PACA hydrogel patch. This study provides evidence that PACA hydrogel-mediated PDT could be a patient-friendly treatment modality for OPMDs.
Asunto(s)
Fotoquimioterapia , Lesiones Precancerosas , Ácido Aminolevulínico/uso terapéutico , Animales , Cricetinae , Humanos , Hidrogeles/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Lesiones Precancerosas/tratamiento farmacológicoRESUMEN
Magnesium cation (Mg2+) has been an emerging therapeutic agent for inducing vascularized bone regeneration. However, the therapeutic effects of current magnesium (Mg) -containing biomaterials are controversial due to the concentration- and stage-dependent behavior of Mg2+. Here, we first provide an overview of biochemical mechanism of Mg2+ in various concentrations and suggest that 2-10 mM Mg2+in vitro may be optimized. This review systematically summarizes and discusses several types of controlled Mg2+ delivery systems based on polymer-Mg composite scaffolds and Mg-containing hydrogels, as well as their design philosophy and several parameters that regulate Mg2+ release. Given that the continuous supply of Mg2+ may prevent biomineral deposition in the later stage of bone regeneration and maturation, we highlight the controlled delivery of Mg2+ based dual- or multi-ions system, especially for the hierarchical therapeutic ion release system, which shows enhanced biomineralization. Finally, the remaining challenges and perspectives of Mg-containing biomaterials for future in situ bone tissue engineering are discussed as well.
Asunto(s)
Magnesio , Ingeniería de Tejidos , Materiales Biocompatibles , Cationes , Hidrogeles , Magnesio/farmacología , Polímeros , Andamios del TejidoRESUMEN
Multicellular aggregates have been widely utilized for regenerative medicine; however, the heterogeneous structure and undesired bioactivity of cell-only aggregates hinder their clinical translation. In this study, we fabricated an innovative kind of microparticle-integrated cellular aggregate with multifunctional activities in angiogenesis and osteogenesis, by combining stem cells from human exfoliated deciduous teeth (SHEDs) and bioactive composite microparticles. The poly(lactide-co-glycolide) (PLGA)-based bioactive microparticles (PTV microparticles) were â¼15 µm in diameter, with dispersed ß-tricalcium phosphate (ß-TCP) nanoparticles and surface-modified vascular endothelialcadherin fusion protein (hVE-cad-Fc). After co-culturing with microparticles in U-bottomed culture plates, SHEDs could firmly attach to the microparticles with a homogeneous distribution. The PTV microparticle-integrated SHED aggregates (PTV/SHED aggregates) showed significant positive CD31 and ALP expression, as well as the significantly upregulated osteogenesis makers (Runx2, ALP, and OCN) and angiogenesis makers (Ang-1 and CD31), compared with PLGA, PLGA/ß-TCP (PT) and PLGA/hVE-cad-Fc (PV) microparticle-integrated SHED aggregates. Finally, in mice, 3 mm calvarial defects filled with the PTV microparticle-integrated SHED aggregates achieved abundant vascularized neo-bone regeneration within 4 weeks. Overall, we believe that these multifunctional PTV/SHED aggregates could be used as modules for bottom-up regenerative medicine, and provide a promising method for vascularized bone regeneration.
Asunto(s)
Fosfatos de Calcio , Osteogénesis , Animales , Regeneración Ósea , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Ratones , Neovascularización Patológica , Células MadreRESUMEN
Hydrogels composed of natural biopolymers are attractive for tissue regeneration applications owing to their advantages such as biocompatibility and ease of administration, etc.. Yet, the low oxygen level and the crosslinked network inside bulk hydrogels, as well as the hypoxic status in defect areas, hamper cell viability, function, and eventual tissue repair. Herein, based on Ca2+-crosslinked alginate hydrogel, oxygen-generating calcium peroxide (CaO2) was introduced, which could provide a dynamic crosslinking alongside the CaO2 decomposition. Compared to the CaCl2-crosslinked alginate hydrogel, bone marrow mesenchymal stromal cells cultured with CaO2-contained system displayed remarkably improved biological behaviors. Furthermore, in vivo evaluations were carried out on a subcutaneous implantation in rats, and the results demonstrated the importance of the local oxygen availability in a series of crucial events for tissue regeneration, such as activating cell viability, migration, angiogenesis, and osteogenesis. In summary, the obtained Ca2+-crosslinked alginate hydrogel achieved a better microenvironment for cell ingrowth and potential tissue regeneration as the CaCl2 crosslinker being replaced by oxygen-generating CaO2 nanoparticles, due to its contribution in remedying the local hypoxic condition, promisingly, the release of Ca2+ makes the hydrogel to be a possible candidate scaffold for bone tissue engineering.
Asunto(s)
Hidrogeles , Andamios del Tejido , Alginatos , Animales , Cloruro de Calcio , Oxígeno , RatasRESUMEN
Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated regenerative potential for cell-free bone tissue engineering, nevertheless, certain challenges, including the confined therapeutic potency of exosomes and ineffective delivery method, are still persisted. Here, we confirmed that hypoxic precondition could induce enhanced secretion of exosomes from stem cells from human exfoliated deciduous teeth (SHEDs) via comprehensive proteomics analysis, and the corresponding hypoxic exosomes (H-Exo) exhibited superior potential in promoting cellular angiogenesis and osteogenesis via the significant up-regulation in focal adhesion, VEGF signaling pathway, and thyroid hormone synthesis. Then, we developed a platform technology enabling the effective delivery of hypoxic exosomes with sustained release kinetics to irregular-shaped bone defects via injection. This platform is based on a simple adsorbing technique, where exosomes are adsorbed onto the surface of injectable porous poly(lactide-co-glycolide) (PLGA) microspheres with bioinspired polydopamine (PDA) coating (PMS-PDA microspheres). The PMS-PDA microspheres could effectively adsorb exosomes, show sustained release of H-Exo for 21 days with high bioactivity, and induce vascularized bone regeneration in 5-mm rat calvarial defect. These findings indicate that the hypoxic precondition and PMS-PDA porous microsphere-based exosome delivery are efficient in inducing tissue regeneration, hence facilitating the clinical translation of exosome-based therapy.
RESUMEN
Dental pulp necrosis are serious pathologic entities that causes tooth nutrition deficiency and abnormal root development, while regeneration of functional pulp tissue is of paramount importance to regain tooth vitality. However, existing clinical treatments, which focus on replacing the necrotic pulp tissue with inactive filling materials, fail to restore pulp vitality and functions, thus resulting in a devitalized and weakened tooth. Currently, dental pulp regeneration via stem cell-based therapy for pulpless teeth has raised enormous attention to restore the functional pulp. Here, a novel design of injectable simvastatin (SIM) functionalized gelatin methacrylate (GelMA) cryogel microspheres (SMS) loaded with stem cells from human exfoliated deciduous teeth (SHEDs) was established to refine SHEDs biological behaviors and promote in vivo vascularized pulp-like tissue regeneration. In this system, SIM encapsulated poly (lactide-co-glycolide) (PLGA) nanoparticles were incorporated into GelMA cryogel microspheres via cryogelation and O1/W/O2 emulsion method. SMS with sustained release of SIM promoted SHEDs adhesion, proliferation and exhibited cell protection properties during the injection process. Furthermore, SMS enhanced SHEDs odontogenic differentiation and angiogenic potential, and SHEDs loaded SMS (SHEDs/SMS) are beneficial for human umbilical vein endothelial cells (HUVECs) migration and angiogenesis, demonstrating their potential for use in promoting vascularized tissue regeneration. SHEDs/SMS complexes were injected into cleaned human tooth root segments for subcutaneous implantation in nude mice. Our results demonstrated that SHEDs/SMS could induce vessel-rich pulp-like tissue regeneration in vivo and that such an injectable nano-in-micro multistage system for the controlled delivery of bioactive reagents would be suitable for clinical application in endodontic regenerative dentistry.
RESUMEN
It is challenging for injectable hydrogels to achieve high underwater adhesiveness. Based on this concern, we report a fully physically crosslinked injectable hydrogel composed of gelatin, tea polyphenols and urea, capable of realising smart adhesion to various materials, like glass and porcine skin, in diverse aqueous environments. The urea molecules are designed as crosslinking disruptors for interfering with the formation of hydrogen bonds in the hydrogel, therefore modulating its crosslinking density and mechanical properties such as tensile strength, toughness and adhesive strength. Triggered by physical diffusion of the urea molecules towards the surrounding liquid environment, the hydrogel can achieve efficient (â¼10 s), self-strengthening and long-lasting (>2 weeks) underwater adhesion. Remarkably, for fresh porcine skin, the instantaneous underwater adhesive strength is 10.4 kPa whereas the peak strength is as high as 152.9 kPa with the aid of the self-strengthening effect. More interestingly, it can simultaneously form controllable underwater non-adhesive surfaces, regulated by changes in the diffusion-triggered local concentration of urea. Further, it is also biocompatible, antibacterial, biodegradable and 3D printable in water, which offers great convenience for various applications concerning smart interfacial adhesion, like biomedicine and flexible electronics. Likewise, the physical diffusion-mediated mechanism represents an innovative strategy for developing next-generation smart hydrogels.
Asunto(s)
Hidrogeles , Adhesivos Tisulares , Adhesividad , Adhesivos/química , Animales , Gelatina/química , Hidrogeles/química , Porcinos , Adhesivos Tisulares/químicaRESUMEN
For craniofacial bone regeneration, how to promote vascularized bone regeneration is still a significant problem, and the controlled release of trace elements vital to osteogenesis has attracted attention. In this study, an ion co-delivery system was developed to promote angiogenesis and osteogenesis. Magnesium ions (Mg2+) and lanthanum ions (La3+) were selected as biosignal molecules because Mg2+can promote angiogenesis and both of them can enhance bone formation. Microspheres made of poly(lactide-co-glycolide) were applied to load La2(CO3)3, which was embedded into a MgO/MgCO3-loaded cryogel made of photocrosslinkable gelatin methacryloyl to enable co-delivery of Mg2+and La3+. Evaluations of angiogenesis and osteogenesis were conducted via bothin vitrocell culture using human bone marrow mesenchymal stromal cells andin vivoimplantation using a rat model with calvarial defect (5 mm in diameter). Compared to systems releasing only Mg2+or La3+, the combination system demonstrated more significant effects on blood vessels formation, thereby promoting the regeneration of vascularized bone tissue. At 8 weeks post-implantation, the new bone volume/total bone volume ratio reached a value of 40.1 ± 0.9%. In summary, a properly designed scaffold system with the capacity to release ions of different bioactivities in a desired pattern can be a promising strategy to meet vascularized bone regeneration requirements.
Asunto(s)
Lantano , Magnesio , Animales , Regeneración Ósea , Gelatina , Iones , Lantano/farmacología , Magnesio/farmacología , Metacrilatos , Osteogénesis , Ratas , Andamios del TejidoRESUMEN
There are intensive needs for scaffolds with new designs to meet the diverse requirements of bone repairing. Biodegradable microspheres are highlighted as injectable micro-scaffolds thanks to their advantages in filling irregular defects via a minimally invasive surgery. In this study, microspheres with surface micropores were made via the W1/O/W2 double emulsion method using amphiphilic triblock copolymers (PLLA-PEG-PLLA) composed of poly(L-lactide) (PLLA) and poly(ethylene glycol) (PEG) segments. When the PEG fraction was controlled as 10 wt.%, the microspheres demonstrated higher cell affinity than the smooth-surfaced PLLA microspheres. After being further functionalized with polydopamine coating and apatite deposition, the PLLA-PEG-PLLA microspheres could up-regulate the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) significantly. Before subcutaneous implantation, bone morphogenetic protein-2 (BMP-2) was adsorbed onto the biomineralized microspheres by taking advantages of the strong affinity of apatite to BMP-2. The resulted microspheres induced ectopic osteogenesis efficiently without causing biocompatibility problems. In summary, this study provided a simple strategy to prepare functionalized microspheres with osteoconductivity and osteoinductivity, which showed great potential in promoting bone regeneration as injectable micro-scaffolds.
Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Apatitas , Regeneración Ósea , Microesferas , Andamios del TejidoRESUMEN
Current scaffolds applied for bone tissue engineering are still lacking sufficient osteogenic capacity to induce efficient bone regeneration. Biodegradable microsphere-type scaffolds are designed to achieve the dual-controlled release of a Chinese medicine (i.e., icariin, ICA) and a bioactive ion (i.e., Mg2+ ), in order to achieve their synergistic effect on inducing osteogenesis. The hydrophobic icariin is preloaded onto MgO/MgCO3 (1:1 in weight ratio) particles at different amounts and then the particles are encapsulated into biodegradable poly(lactide-co-glycolide) (PLGA) microspheres (PMI) at a fixed fraction (20 wt%). Continuous releases of Mg2+ ion and icariin from the microspheres are detected, showing dependence on icariin amounts. At an optimized moderate loading amount, the resulting PMI-M microspheres display the strongest activation effect on cell biological behaviors among all the designs. By implanting the PMI-M microspheres into rat calvarial defects for 16 weeks, it is found that they can effectively enhance new bone formation, presenting significantly higher capacity in inducing osteogenesis than PMg (containing MgO/MgCO3 but without icariin) and blank PLGA microspheres. Clearly, the released Mg2+ ions are beneficial to osteogenesis, and the coincorporation of icariin exerts supplemental effects in inducing new bone formation, which suggest a promising strategy to regenerate severe bone injuries by designing a dual-release system.
Asunto(s)
Regeneración Ósea , Osteogénesis , Animales , Preparaciones de Acción Retardada , Flavonoides , Microesferas , Ratas , Andamios del Tejido , Regulación hacia ArribaRESUMEN
BACKGROUND: To improve osseointegration and enhance the success rate of implanted biomaterials, the surface modification technology of bone implants has developed rapidly. Intensive research on osteoimmunomodulation has shown that the surfaces of implants should possess favorable osteoimmunomodulation to facilitate osteogenesis. METHODS: A novel, green and efficient phase-transited lysozyme (PTL) technique was used to prime titanium discs with a positive charge. In addition, sodium hyaluronate (HA) and self-assembled type I collagen containing aspirin (ASA) nanoparticles were decorated on PTL-primed Ti discs via electrostatic interaction. RESULTS: The behaviors of bone marrow stromal cells (BMSCs) on the Ti disc surfaces containing ASA were analyzed in different conditioned media (CM) generated by macrophages. Additionally, the secretion of inflammation-related cytokines of macrophages on the surfaces of different Ti discs was investigated in in vitro experiments, which showed that the Ti surface containing ASA not only supported the migration, proliferation and differentiation of BMSCs but also reduced the inflammatory response of macrophages compared with Ti discs without surface modification. After implantation in vivo, the ASA-modified implant can significantly contribute to bone formation around the implant, which mirrors the evaluation in vitro. CONCLUSION: This study highlights the significant effects of appropriate surface characteristics on the regulation of osteogenesis and osteoimmunomodulation around an implant. Implant modification with ASA potentially provides superior strategies for the surface modification of biomaterials.
Asunto(s)
Aspirina/farmacología , Materiales Biocompatibles Revestidos/farmacología , Factores Inmunológicos/farmacología , Muramidasa/metabolismo , Osteogénesis , Transición de Fase , Titanio/farmacología , Animales , Antiinflamatorios/farmacología , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quitosano/química , Medios de Cultivo Condicionados/farmacología , Liberación de Fármacos , Humanos , Ácido Hialurónico/química , Macrófagos/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Nanopartículas/química , Nanopartículas/ultraestructura , Oseointegración/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Prótesis e Implantes , Células RAW 264.7 , Ratas Sprague-Dawley , Propiedades de SuperficieRESUMEN
Magnesium ions (Mg2+) are bioactive and proven to promote bone tissue regeneration, in which the enhancement efficiency is closely related to Mg2+ concentrations. Currently, there are no well-established bone tissue engineering scaffolds that can precisely control Mg2+ release, although this capability could have a marked impact in bone regeneration. Leveraging the power of biodegradable microspheres to control the release of bioactive factors, we developed lactone-based biodegradable microspheres that served as both injectable scaffolds and Mg2+ release system for bone regeneration. The biodegradable microsphere (PMg) was prepared from poly(lactide-co-glycolide) (PLGA) microspheres co-embedded with MgO and MgCO3 at a fixed total loading amount (20â¯wt%) with different weight ratios (1:0; 3:1; 1:1; 1:3; 0:1). The PMg microspheres demonstrated controlled release of Mg2+ by tuning the MgO/MgCO3 ratios. Specifically, faster release with higher initial concentrations of Mg2+ were detected at higher MgO fractions, while long-term sustained release with lower concentrations of Mg2+ was obtained at higher MgCO3 fractions. All prepared PMg microspheres were non-cytotoxic. Furthermore, they promoted attachment, proliferation, osteogenic differentiation, especially, cell migration of bone marrow mesenchymal stromal cells (BMSCs). Among these microspheres, PMg-III microspheres (MgO/MgCO3 in 1:1) exhibited the strongest promotion of mineral depositions and osteogenic differentiation of BMSCs. PMg-III microspheres were injected into the critical-sized calvarial defect of a rat model, resulting in significant bone regeneration when compared to the control group filled with PLGA microspheres. In the PMg-III group, the new bone volume fraction (BV/TV) and bone mineral density (BMD) reached 32.9⯱â¯5.6% and 325.7⯱â¯20.2â¯mg/cm3, respectively, which were much higher than the values 8.1⯱â¯2.5% (BV/TV) and 124⯱â¯35.8â¯mg/cm3 (BMD) in the PLGA group. These findings indicated that bioresorbable microspheres possessing controlled Mg2+ release features were efficient in treating bone defects and promising for future in vivo applications. STATEMENT OF SIGNIFICANCE: Magnesium plays pivotal roles in regulating osteogenesis, which exhibits concentration-dependent behaviors. However, no generally accepted controlled-release system is reported to correlate Mg2+ concentration with efficient bone regeneration. Biodegradable microspheres with injectability are excellent cell carriers for tissue engineering, moreover, good delivery systems for bioactive factors. By co-embedding magnesium compounds (MgO, MgCO3) with different dissolution rates in various ratios, tunable release of Mg2+ from the microspheres was readily achieved. Accordingly, significant promotion in bone defect regeneration is achieved with microspheres displaying proper sustained release of Mg2+. The developed strategy may serve as valuable guidelines for bone tissue engineering scaffold design, which allows precise control on the release of bioactive metal ions like Mg2+ toward potential clinical translation.
Asunto(s)
Regeneración Ósea/efectos de los fármacos , Inyecciones , Magnesio/farmacología , Microesferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Antibacterianos/farmacología , Calcificación Fisiológica/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Iones , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Ratas Sprague-Dawley , Cráneo/diagnóstico por imagen , Cráneo/efectos de los fármacos , Cráneo/patología , Microtomografía por Rayos XRESUMEN
Biomaterials that have capacities to simultaneously induce bone regeneration and kill bacteria are in demand because bone defects face risks of severe infection in clinical therapy. To meet the demand, multifunctional biodegradable microspheres are fabricated, which contain vancomycin to provide antibacterial activity and strontium-doped apatite to provide osteocompatibility. Moreover, the strontium component shows activity in promoting angiogenesis, which further favors osteogenesis. For producing the microspheres, vancomycin is loaded into mesoporous silica and embedded in polylactide-based microspheres via the double emulsion technique and the strontium-doped apatite is deposited onto the microspheres via biomineralization in strontium-containing simulated body fluid. Sustained release behaviors of both vancomycin and Sr2+ ions are achieved. The microspheres exhibit strong antibacterial effect against Staphylococcus aureus, while demonstrating excellent cell/tissue compatibility. Studies of differentiation confirm that the introduction of strontium element strengthens the angiogenic and osteogenic expressions of mesenchymal stromal cells. Subcutaneous injection of the microspheres into rabbit's back confirms their effectiveness in inducing neovascularization and ectopic osteogenesis. Finally, an infected rabbit femoral condyle defect model is created with S. aureus infection and the multifunctional microspheres are injected, which display significant antibacterial activity in vivo and achieve efficient new bone formation in comparison with biomineralized microspheres without vancomycin loading. The vancomycin- and strontium-loaded microspheres, being biomineralized, injectable, and biodegradable, are attractive because of their flexibility in integrating multiple functions into one design, whose potentials in treating infected bone defects are highly expected.