Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Breast Cancer Res ; 23(1): 29, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663585

RESUMEN

BACKGROUND: MDM2/MDMX proteins are frequently elevated in hormone receptor-positive (ER+) breast cancer. We sought to determine the antitumor efficacy of the combination of ALRN-6924, a dual inhibitor of MDM2/MDMX, with chemotherapy in ER+ breast cancer models. METHODS: Three hundred two cell lines representing multiple tumor types were screened to confirm the role of TP53 status in ALRN-6924 efficacy. ER+ breast cancer cell lines (MCF-7 and ZR-75-1) were used to investigate the antitumor efficacy of ALRN-6924 combination. In vitro cell proliferation, cell cycle, and apoptosis assays were performed. Xenograft tumor volumes were measured, and reverse-phase protein array (RPPA), immunohistochemistry (IHC), and TUNEL assay of tumor tissues were performed to evaluate the in vivo pharmacodynamic effects of ALRN-6924 with paclitaxel. RESULTS: ALRN-6924 was active in wild-type TP53 (WT-TP53) cancer cell lines, but not mutant TP53. On ER+ breast cancer cell lines, it was synergistic in vitro and had enhanced in vivo antitumor activity with both paclitaxel and eribulin. Flow cytometry revealed signs of mitotic crisis in all treatment groups; however, S phase was only decreased in MCF-7 single agent and combinatorial ALRN-6924 arms. RPPA and IHC demonstrated an increase in p21 expression in both combinatorial and single agent ALRN-6924 in vivo treatment groups. Apoptotic assays revealed a significantly enhanced in vivo apoptotic rate in ALRN-6924 combined with paclitaxel treatment arm compared to either single agent. CONCLUSION: The significant synergy observed with ALRN-6924 in combination with chemotherapeutic agents supports further evaluation in patients with hormone receptor-positive breast cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Mitosis , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Breast Cancer Res ; 19(1): 93, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28810913

RESUMEN

BACKGROUND: Selinexor (KPT-330) is an oral agent that has been shown to inhibit the nuclear exporter XPO1. Given the pressing need for novel therapies for triple-negative breast cancer (TNBC), we sought to determine the antitumor effects of selinexor in vitro and in vivo. METHODS: Twenty-six breast cancer cell lines of different breast cancer subtypes were treated with selinexor in vitro. Cell proliferation assays were used to measure the half-maximal inhibitory concentration (IC50) and to test the effects in combination with chemotherapy. In vivo efficacy was tested both as a single agent and in combination therapy in TNBC patient-derived xenografts (PDXs). RESULTS: Selinexor demonstrated growth inhibition in all 14 TNBC cell lines tested; TNBC cell lines were more sensitive to selinexor (median IC50 44 nM, range 11 to 550 nM) than were estrogen receptor (ER)-positive breast cancer cell lines (median IC50 > 1000 nM, range 40 to >1000 nM; P = 0.017). In multiple TNBC cell lines, selinexor was synergistic with paclitaxel, carboplatin, eribulin, and doxorubicin in vitro. Selinexor as a single agent reduced tumor growth in vivo in four of five different TNBC PDX models, with a median tumor growth inhibition ratio (T/C: treatment/control) of 42% (range 31 to 73%) and demonstrated greater antitumor efficacy in combination with paclitaxel or eribulin (average T/C ratios of 27% and 12%, respectively). CONCLUSIONS: Collectively, these findings strongly suggest that selinexor is a promising therapeutic agent for TNBC as a single agent and in combination with standard chemotherapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Proliferación Celular/efectos de los fármacos , Hidrazinas/administración & dosificación , Triazoles/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Apoptosis/efectos de los fármacos , Doxorrubicina/administración & dosificación , Femenino , Furanos/administración & dosificación , Furanos/efectos adversos , Humanos , Hidrazinas/efectos adversos , Cetonas/administración & dosificación , Cetonas/efectos adversos , Células MCF-7 , Ratones , Triazoles/efectos adversos , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Proc Natl Acad Sci U S A ; 110(28): E2572-81, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798432

RESUMEN

The androgen receptor (AR) and the phosphoinositide 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin (mTOR) signaling are two of the major proliferative pathways in a number of tissues and are the main therapeutic targets in various disorders, including prostate cancer (PCa). Previous work has shown that there is reciprocal feedback regulation of PI3K and AR signaling in PCa, suggesting that cotargeting both pathways may enhance therapeutic efficacy. Here we show that proteins encoded by two androgen-regulated genes, kallikrein related peptidase 4 (KLK4) and promyelocytic leukemia zinc finger (PLZF), integrate optimal functioning of AR and mTOR signaling in PCa cells. KLK4 interacts with PLZF and decreases its stability. PLZF in turn interacts with AR and inhibits its function as a transcription factor. PLZF also activates expression of regulated in development and DNA damage responses 1, an inhibitor of mTORC1. Thus, a unique molecular switch is generated that regulates both AR and PI3K signaling. Consistently, KLK4 knockdown results in a significant decline in PCa cell proliferation in vitro and in vivo, decreases anchorage-independent growth, induces apoptosis, and dramatically sensitizes PCa cells to apoptosis-inducing agents. Furthermore, in vivo nanoliposomal KLK4 siRNA delivery in mice bearing PCa tumors results in profound remission. These results demonstrate that the activities of AR and mTOR pathways are maintained by KLK4, which may thus be a viable target for therapy.


Asunto(s)
Andrógenos/metabolismo , Calicreínas/fisiología , Neoplasias de la Próstata/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Muerte Celular , División Celular , Activación Enzimática , Fase G1 , Técnicas de Silenciamiento del Gen , Humanos , Calicreínas/genética , Masculino , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo
4.
Sci Rep ; 13(1): 20223, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980453

RESUMEN

Several alterations in fibroblast growth factor receptor (FGFR) genes have been found in breast cancer; however, they have not been well characterized as therapeutic targets. Futibatinib (TAS-120; Taiho) is a novel, selective, pan-FGFR inhibitor that inhibits FGFR1-4 at nanomolar concentrations. We sought to determine futibatinib's efficacy in breast cancer models. Nine breast cancer patient-derived xenografts (PDXs) with various FGFR1-4 alterations and expression levels were treated with futibatinib. Antitumor efficacy was evaluated by change in tumor volume and time to tumor doubling. Alterations indicating sensitization to futibatinib in vivo were further characterized in vitro. FGFR gene expression between patient tumors and matching PDXs was significantly correlated; however, overall PDXs had higher FGFR3-4 expression. Futibatinib inhibited tumor growth in 3 of 9 PDXs, with tumor stabilization in an FGFR2-amplified model and prolonged regression (> 110 days) in an FGFR2 Y375C mutant/amplified model. FGFR2 overexpression and, to a greater extent, FGFR2 Y375C expression in MCF10A cells enhanced cell growth and sensitivity to futibatinib. Per institutional and public databases, FGFR2 mutations and amplifications had a population frequency of 1.1%-2.6% and 1.5%-2.5%, respectively, in breast cancer patients. FGFR2 alterations in breast cancer may represent infrequent but highly promising targets for futibatinib.


Asunto(s)
Neoplasias de la Mama , Animales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Pirazoles , Pirimidinas/farmacología , Pirroles , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Modelos Animales de Enfermedad
5.
Cell Signal ; 81: 109938, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33539938

RESUMEN

Ovarian cancer (OC) is the deadliest gynecological cancer and is currently incurable with standard treatment regimens. Early invasion, intraperitoneal metastasis, and an aggressive course are the hallmarks of OC. The major reason for poor prognosis is a lack of molecular targets and highly effective targeted therapies. Therefore, identification of novel molecular targets and therapeutic strategies is urgently needed to improve OC survival. Herein we report that eukaryotic elongation factor-2 kinase (EF2K) is highly upregulated in primary and drug-resistant OC cells and its expresssion associated with progression free survival TCGA database) and promotes cell proliferation, survival, and invasion. Downregulation of EF2K reduced expression of integrin ß1 and cyclin D1 and the activity of the Src, phosphoinositide 3-kinase/AKT, and nuclear factor-κB signaling pathways. Also, in vivo, therapeutic targeting of EF2K by using single-lipid nanoparticles containing siRNA led to substantial inhibition of ovarian tumor growth and peritoneal metastasis in nude mouse models. Furthermore, EF2K inhibition led to robust apoptosis and markedly reduced intratumoral proliferation in vivo in ovarian tumor xenografts and intraperitoneal metastatic models. Collectively, our data suggest for the first time that EF2K plays an important role in OC growth, metastasis, and progression and may serve as a novel therapeutic target in OCs.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/enzimología , Neoplasias Peritoneales/enzimología , Transducción de Señal , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Quinasa del Factor 2 de Elongación/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/secundario
6.
Clin Cancer Res ; 27(6): 1681-1694, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33414137

RESUMEN

PURPOSE: Neratinib is an irreversible, pan-HER tyrosine kinase inhibitor that is FDA approved for HER2-overexpressing/amplified (HER2+) breast cancer. In this preclinical study, we explored the efficacy of neratinib in combination with inhibitors of downstream signaling in HER2+ cancers in vitro and in vivo. EXPERIMENTAL DESIGN: Cell viability, colony formation assays, and Western blotting were used to determine the effect of neratinib in vitro. In vivo efficacy was assessed with patient-derived xenografts (PDX): two breast, two colorectal, and one esophageal cancer (with HER2 mutations). Four PDXs were derived from patients who received previous HER2-targeted therapy. Proteomics were assessed through reverse phase protein arrays and network-level adaptive responses were assessed through Target Score algorithm. RESULTS: In HER2+ breast cancer cells, neratinib was synergistic with multiple agents, including mTOR inhibitors everolimus and sapanisertib, MEK inhibitor trametinib, CDK4/6 inhibitor palbociclib, and PI3Kα inhibitor alpelisib. We tested efficacy of neratinib with everolimus, trametinib, or palbociclib in five HER2+ PDXs. Neratinib combined with everolimus or trametinib led to a 100% increase in median event-free survival (EFS; tumor doubling time) in 25% (1/4) and 60% (3/5) of models, respectively, while neratinib with palbociclib increased EFS in all five models. Network analysis of adaptive responses demonstrated upregulation of EGFR and HER2 signaling in response to CDK4/6, mTOR, and MEK inhibition, possibly providing an explanation for the observed synergies with neratinib. CONCLUSIONS: Taken together, our results provide strong preclinical evidence for combining neratinib with CDK4/6, mTOR, and MEK inhibitors for the treatment of HER2+ cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Esofágicas/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptor ErbB-2/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Everolimus/administración & dosificación , Femenino , Humanos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Piperazinas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/administración & dosificación , Piridinas/administración & dosificación , Piridonas/administración & dosificación , Pirimidinas/administración & dosificación , Pirimidinonas/administración & dosificación , Quinolinas/administración & dosificación , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cancer Res ; 81(21): 5572-5581, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518211

RESUMEN

Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX). On gene expression profiling, all of the sensitive models displayed a basal-like 1 TNBC subtype. Expression of mitochondrial genes was significantly higher in sensitive PDXs. An in vivo functional genomics screen to identify synthetic lethal targets in tumors treated with IACS-10759 found several potential targets, including CDK4. We validated the antitumor efficacy of the combination of palbociclib, a CDK4/6 inhibitor, and IACS-10759 in vitro and in vivo. In addition, the combination of IACS-10759 and multikinase inhibitor cabozantinib had improved antitumor efficacy. Taken together, our data suggest that OXPHOS is a metabolic vulnerability in TNBC that may be leveraged with novel therapeutics in combination regimens. SIGNIFICANCE: These findings suggest that triple-negative breast cancer is highly reliant on OXPHOS and that inhibiting OXPHOS may be a novel approach to enhance efficacy of several targeted therapies.


Asunto(s)
Anilidas/farmacología , Resistencia a Antineoplásicos , Metaboloma , Recurrencia Local de Neoplasia/tratamiento farmacológico , Oxadiazoles/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Pronóstico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncotarget ; 11(11): 969-981, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32215185

RESUMEN

Background: PTEN-deficient tumors are dependent on PI3Kß activity, making PI3Kß a compelling target. We evaluated the efficacy of PI3Kß inhibitor AZD8186 on tumors with PTEN loss. Results: In vitro cell viability assay and immunoblotting demonstrated that PTEN loss was significantly correlated with AZD8186 sensitivity in triple negative breast cancer (TNBC) cell lines. Colony formation assay confirmed sensitivity of PTEN-deficient cell lines to AZD8186. AZD8186 inhibited PI3K signaling in PTEN loss TNBC cells. AZD8186 in combination with paclitaxel, eribulin had synergistic effects on growth inhibition in PTEN loss cells. AZD8186 promoted apoptosis in PTEN loss cells which was synergized by paclitaxel. In vivo, AZD8186 had limited activity as a single agent, but enhanced antitumor activity when combined with paclitaxel in MDA-MB-436 and MDA-MB-468 cell-line xenografts. AZD8186 significantly enhanced antitumor efficacy of anti-PD1 antibodies in the PTEN-deficient BP murine melanoma xenograft model, but not in the PTEN-wild-type CT26 xenograft model. Methods: In vitro, cell proliferation and colony formation assays were performed to determine cell sensitivity to AZD8186. Immunoblotting was performed to assess PTEN expression and PI3K signaling activity. FACS was performed to evaluate apoptosis. In vivo, antitumor efficacy of AZD8186 and its combinations were evaluated. Conclusions: AZD8186 has single agent efficacy in PTEN-deficient TNBC cell lines in vitro, but has limited single agent efficacy in vivo. However, AZD8186 has enhanced efficacy when combined with paclitaxel and anti-PD1 in vivo. Further study is needed to determine optimal combination therapies for PTEN-deficient solid tumors.

9.
Oncotarget ; 10(49): 5011-5019, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31489111

RESUMEN

Background: Phosphatase and tensin homologue deleted from chromosome 10 (PTEN) negatively regulates the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway. Triple negative breast cancers (TNBC) are often PTEN-deficient, making mTOR a compelling target. We evaluated the efficacy of catalytic mTOR inhibitor TAK228 alone and in combination with eribulin in TNBC. Results: Five of eight triple negative breast cell lines were sensitive to TAK228, independent of PIK3CA/PTEN status. Western blotting demonstrated inhibition of mTORC1/2 signaling as demonstrated by decreased phospho-AKT, phospho-S6 and phospho-4EBP1. In vitro, TAK228 was synergistic with eribulin in all eight TNBC cell lines. The combination of TAK228 and eribulin did not enhance apoptosis but increased G2/M growth arrest. In vivo, TAK228 led to modest growth inhibition in TNBC patient-derived xenografts (PDXs) with no tumor regression observed. In two TNBC PDXs with PTEN loss, one with intrinsic eribulin sensitivity, another eribulin resistance, TAK228 in combination with eribulin did not enhance in vivo efficacy. In a third PTEN-negative TNBC model, eribulin alone achieved disease stabilization, but the combination of TAK228 and eribulin led to significantly smaller tumor volumes compared to eribulin alone (p < 0.001). Methods: We tested in vitro efficacy of TAK228 in a panel of TNBC cell lines with cell proliferation assays. In vivo antitumor efficacy of TAK228 was evaluated alone and in combination with eribulin. Conclusion: TAK228 enhances the antitumor efficacy of eribulin in TNBC models in vitro, and enhanced in vivo activity in selected models. Further study is needed to determine the potential of this combination, and optimal patient selection strategies.

11.
Clin Cancer Res ; 23(21): 6468-6477, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093017

RESUMEN

Background: Breast cancer patients who do not respond to neoadjuvant therapy have a poor prognosis. There is a pressing need for novel targets and models for preclinical testing. Here we report characterization of breast cancer patient-derived xenografts (PDX) largely generated from residual tumors following neoadjuvant chemotherapy.Experimental Design: PDXs were derived from surgical samples of primary or locally recurrent tumors. Normal and tumor DNA sequencing, RNASeq, and reverse phase protein arrays (RPPA) were performed. Phenotypic profiling was performed by determining efficacy of a panel of standard and investigational agents.Results: Twenty-six PDXs were developed from 25 patients. Twenty-two were generated from residual disease following neoadjuvant chemotherapy, and 24 were from triple-negative breast cancer (TNBC). These PDXs harbored a heterogeneous set of genomic alterations and represented all TNBC molecular subtypes. On RPPA, PDXs varied in extent of PI3K and MAPK activation. PDXs also varied in their sensitivity to chemotherapeutic agents. PI3K, mTOR, and MEK inhibitors repressed growth but did not cause tumor regression. The PARP inhibitor talazoparib caused dramatic regression in five of 12 PDXs. Notably, four of five talazoparib-sensitive models did not harbor germline BRCA1/2 mutations, but several had somatic alterations in homologous repair pathways, including ATM deletion and BRCA2 alterations.Conclusions: PDXs capture the molecular and phenotypic heterogeneity of TNBC. Here we show that PARP inhibition can have activity beyond germline BRCA1/2 altered tumors, causing regression in a variety of molecular subtypes. These models represent an opportunity for the discovery of rational combinations with targeted therapies and predictive biomarkers. Clin Cancer Res; 23(21); 6468-77. ©2017 AACR.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Ftalazinas/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Acrilonitrilo/administración & dosificación , Acrilonitrilo/análogos & derivados , Compuestos de Anilina/administración & dosificación , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mutación de Línea Germinal , Humanos , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ftalazinas/efectos adversos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
EMBO Mol Med ; 7(3): 315-31, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25680860

RESUMEN

The six transmembrane protein of prostate 2 (STAMP2) is an androgen-regulated gene whose mRNA expression is increased in prostate cancer (PCa). Here, we show that STAMP2 protein expression is increased in human PCa compared with benign prostate that is also correlated with tumor grade and treatment response. We also show that STAMP2 significantly increased reactive oxygen species (ROS) in PCa cells through its iron reductase activity which also depleted NADPH levels. Knockdown of STAMP2 expression in PCa cells inhibited proliferation, colony formation, and anchorage-independent growth, and significantly increased apoptosis. Furthermore, STAMP2 effects were, at least in part, mediated by activating transcription factor 4 (ATF4), whose expression is regulated by ROS. Consistent with in vitro findings, silencing STAMP2 significantly inhibited PCa xenograft growth in mice. Finally, therapeutic silencing of STAMP2 by systemically administered nanoliposomal siRNA profoundly inhibited tumor growth in two established preclinical PCa models in mice. These data suggest that STAMP2 is required for PCa progression and thus may serve as a novel therapeutic target.


Asunto(s)
Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Oxidorreductasas/metabolismo , Neoplasias de la Próstata/patología , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , FMN Reductasa/genética , FMN Reductasa/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Oxidorreductasas/genética , Neoplasias de la Próstata/genética , Especies Reactivas de Oxígeno , Trasplante Heterólogo
13.
Nat Commun ; 6: 7351, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26081979

RESUMEN

Ovarian cancer (OC) is a highly metastatic disease, but no effective strategies to target this process are currently available. Here, an integrative computational analysis of the Cancer Genome Atlas OC data set and experimental validation identifies a zinc finger transcription factor ZNF304 associated with OC metastasis. High tumoral ZNF304 expression is associated with poor overall survival in OC patients. Through reverse phase protein array analysis, we demonstrate that ZNF304 promotes multiple proto-oncogenic pathways important for cell survival, migration and invasion. ZNF304 transcriptionally regulates ß1 integrin, which subsequently regulates Src/focal adhesion kinase and paxillin and prevents anoikis. In vivo delivery of ZNF304 siRNA by a dual assembly nanoparticle leads to sustained gene silencing for 14 days, increased anoikis and reduced tumour growth in orthotopic mouse models of OC. Taken together, ZNF304 is a transcriptional regulator of ß1 integrin, promotes cancer cell survival and protects against anoikis in OC.


Asunto(s)
Anoicis , Carcinoma/metabolismo , Cadenas beta de Integrinas/metabolismo , Neoplasias Ováricas/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos
14.
Cell Rep ; 7(2): 488-500, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24703838

RESUMEN

Therapeutic upregulation of macroautophagy in cancer cells provides an alternative mechanism for cell death. Prolactin (PRL) and its receptor (PRLR) are considered attractive therapeutic targets because of their roles as growth factors in tumor growth and progression. We utilized G129R, an antagonist peptide of PRL, to block activity of the tumoral PRL/PRLR axis, which resulted in inhibition of tumor growth in orthotopic models of human ovarian cancer. Prolonged treatment with G129R induced the accumulation of redundant autolysosomes in 3D cancer spheroids, leading to a type II programmed cell death. This inducible autophagy was a noncanonical beclin-1-independent pathway and was sustained by an astrocytic phosphoprotein (PEA-15) and protein kinase C zeta interactome. Lower levels of tumoral PRL/PRLR in clinical samples were associated with longer patient survival. Our findings provide an understanding of the mechanisms of tumor growth inhibition through targeting PRL/PRLR and may have clinical implications.


Asunto(s)
Autofagia , Biomarcadores de Tumor/metabolismo , Carcinoma/metabolismo , Neoplasias Ováricas/metabolismo , Prolactina/antagonistas & inhibidores , Receptores de Prolactina/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Carcinoma/diagnóstico , Muerte Celular , Línea Celular Tumoral , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias Ováricas/diagnóstico , Fosfoproteínas/metabolismo , Prolactina/metabolismo , Prolactina/farmacología , Proteína Quinasa C/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo
15.
Mol Ther Nucleic Acids ; 2: e121, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24022053

RESUMEN

Bcl-2 is overexpressed in about a half of human cancers and 50-70% of breast cancer patients, thereby conferring resistance to conventional therapies and making it an excellent therapeutic target. Small interfering RNA (siRNA) offers novel and powerful tools for specific gene silencing and molecularly targeted therapy. Here, we show that therapeutic silencing of Bcl-2 by systemically administered nanoliposomal (NL)-Bcl-2 siRNA (0.15 mg siRNA/kg, intravenous) twice a week leads to significant antitumor activity and suppression of growth in both estrogen receptor-negative (ER(-)) MDA-MB-231 and ER-positive (+) MCF7 breast tumors in orthotopic xenograft models (P < 0.05). A single intravenous injection of NL-Bcl-2-siRNA provided robust and persistent silencing of the target gene expression in xenograft tumors. NL-Bcl-2-siRNA treatment significantly increased the efficacy of chemotherapy when combined with doxorubicin in both MDA-MB-231 and MCF-7 animal models (P < 0.05). NL-Bcl-2-siRNA treatment-induced apoptosis and autophagic cell death, and inhibited cyclin D1, HIF1α and Src/Fak signaling in tumors. In conclusion, our data provide the first evidence that in vivo therapeutic targeting Bcl-2 by systemically administered nanoliposomal-siRNA significantly inhibits growth of both ER(-) and ER(+) breast tumors and enhances the efficacy of chemotherapy, suggesting that therapeutic silencing of Bcl-2 by siRNA is a viable approach in breast cancers.Molecular Therapy-Nucleic Acids (2013) 2, e121; doi:10.1038/mtna.2013.45; published online 10 September 2013.

16.
Clin Cancer Res ; 18(24): 6648-57, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23052253

RESUMEN

PURPOSE: The TMPRSS2/ERG (T/E) fusion gene is present in half of all prostate cancer tumors. Fusion of the oncogenic ERG gene with the androgen-regulated TMPRSS2 gene promoter results in expression of fusion mRNAs in prostate cancer cells. The junction of theTMPRSS2- and ERG-derived portions of the fusion mRNA constitutes a cancer-specific target in cells containing the T/E fusion gene. Targeting the most common alternatively spliced fusion gene mRNA junctional isoforms in vivo using siRNAs in liposomal nanovectors may potentially be a novel, low-toxicity treatment for prostate cancer. EXPERIMENTAL DESIGN: We designed and optimized siRNAs targeting the two most common T/E fusion gene mRNA junctional isoforms (type III or type VI). Specificity of siRNAs was assessed by transient co-transfection in vitro. To test their ability to inhibit growth of prostate cancer cells expressing these fusion gene isoforms in vivo, specific siRNAs in liposomal nanovectors were used to treat mice bearing orthotopic or subcutaneous xenograft tumors expressing the targeted fusion isoforms. RESULTS: The targeting siRNAs were both potent and highly specific in vitro. In vivo they significantly inhibited tumor growth. The degree of growth inhibition was variable and was correlated with the extent of fusion gene knockdown. The growth inhibition was associated with marked inhibition of angiogenesis and, to a lesser degree, proliferation and a marked increase in apoptosis of tumor cells. No toxicity was observed. CONCLUSIONS: Targeting the T/E fusion junction in vivo with specific siRNAs delivered via liposomal nanovectors is a promising therapy for men with prostate cancer.


Asunto(s)
Proteínas de Fusión Oncogénica/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transfección/métodos , Animales , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Liposomas , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteínas de Fusión Oncogénica/metabolismo , Neoplasias de la Próstata/terapia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Regulador Transcripcional ERG
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA