Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256260

RESUMEN

The human immunodeficiency virus (HIV) epidemic is a global issue. The estimated number of people with HIV is 39,000,000 to date. Antiviral therapy is the primary approach to treat the infection. However, it does not allow for a complete elimination of the pathogen. The advances in modern gene therapy methods open up new possibilities of effective therapy. One of these areas of possibility is the development of technologies to prevent virus penetration into the cell. Currently, a number of technologies aimed at either the prevention of virus binding to the CCR5 coreceptor or its knockout are undergoing various stages of clinical trials. Since HIV can also utilize the CXCR4 coreceptor, technologies to modify this receptor are also required. Standard knockout of CXCR4 is impossible due to its physiological significance. This review presents an analysis of interactions between individual amino acids in CXCR4 and physiological ligands and HIV gp120. It also discusses potential targets for gene therapy approaches aimed at modifying the coreceptor.


Asunto(s)
Antifibrinolíticos , Epidemias , Infecciones por VIH , Humanos , Aminoácidos , Terapia Genética , Infecciones por VIH/genética , Infecciones por VIH/terapia , Receptores CXCR4/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256229

RESUMEN

Tumor necrosis factor alpha (TNF-α) is a cytokine that is responsible for many processes associated with immune response and inflammation. It is involved in the development of an antiviral response to many virus infections. This factor was shown to be activated in influenza A virus infection, which enhances production of other cytokines. The overexpression of these cytokines can lead to a cytokine storm. To study the role of TNF-α in the development of pathologies associated with viral infection, we generated a Tnfa knockout mouse strain. We demonstrated that these mice were characterized by a significant increase in the number of viral genomes compared to that in the parental strain, but the amount of live virus did not differ. A histopathology of the lungs in the genetically modified animals was significantly lower in terms of interalveolar septal infiltration. The generated model may be used to further study pathological processes in viral infections.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae , Factor de Necrosis Tumoral alfa , Animales , Ratones , Citocinas/genética , Ratones Noqueados , Factor de Necrosis Tumoral alfa/genética , Infecciones por Orthomyxoviridae/patología
3.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499289

RESUMEN

Gene therapy is widely used to treat incurable disorders and has become a routine procedure in clinical practice. Since viruses can exhibit specific tropisms, effectively penetrate the cell, and are easy to use, most gene therapy approaches are based on viral delivery of genetic material. However, viral vectors have some disadvantages, such as immune response and cytotoxicity induced by a disturbance of cell metabolism, including miRNA pathways that are an important part of transcription regulation. Therefore, any viral-based gene therapy approach involves the evaluation of side effects and safety. It is possible for such effects to be caused either by the viral vectors themselves or by the delivered genetic material. Many gene therapy techniques use non-coding RNA delivery as an effective agent for gene expression regulation, with the risk of cellular miRNA pathways being affected due to the nature of the non-coding RNAs. This review describes the effect of viral vector entry and non-coding RNA delivery by these vectors on miRNA signaling pathways.


Asunto(s)
MicroARNs , Virus , MicroARNs/metabolismo , Vectores Genéticos/genética , Terapia Genética/métodos , Virus/genética , Genes Virales , Técnicas de Transferencia de Gen
4.
Gene Ther ; 27(6): 247-253, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203197

RESUMEN

Fragile X syndrome (FXS) is the most common form of intellectual disability and autism spectrum disorder and is caused by CGG repeat expansion in the promoter region of the FMR1 gene, which encodes fragile X mental retardation protein. This event leads to gene silencing and the loss of gene products through DNA methylation and chromatin remodeling. Due to the pathogenesis of FXS, targeted, symptomatic, and etiological approaches have been developed for its treatment. Despite their rapid development, symptomatic and targeted treatment approaches have numerous limitations; etiological approaches have the greatest potential because they affect the main causes of transcriptional silencing. In this review, we consider three potential etiological therapeutic methods that affect the reactivation of FMR1 gene expression: treatment with inhibitors of chromatin-modifying enzymes, the use of noncoding RNAs and the application of gene therapy. Inhibitors of chromatin-modifying enzymes are not clinically applicable because of their low reactivity and high cytotoxicity, and noncoding RNAs are currently only under study. Thus, we discuss gene therapy as the most promising approach for treating FXS in the near future.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Metilación de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/terapia , Expresión Génica , Silenciador del Gen , Humanos
5.
Adv Exp Med Biol ; 1241: 101-124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32383118

RESUMEN

The mammalian genome mostly contains repeated sequences. Some of these repeats are in the regulatory elements of genes, and their instability, particularly the propensity to change the repeat unit number, is responsible for 36 well-known neurodegenerative human disorders. The mechanism of repeat expansion has been an unsolved question for more than 20 years. There are a few hypotheses describing models of mutation development. Every hypothesis is based on assumptions about unusual secondary structures that violate DNA metabolism processes in the cell. Some models are based on replication errors, and other models are based on mismatch repair or base excision repair errors. Additionally, it has been shown that epigenetic regulation of gene expression can influence the probability and frequency of expansion. In this review, we consider the molecular bases of repeat expansion disorders and discuss possible mechanisms of repeat expansion during cell metabolism.


Asunto(s)
Daño del ADN , ADN/metabolismo , Enfermedades Neurodegenerativas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Reparación del ADN , Epigénesis Genética , Humanos
6.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121109

RESUMEN

Virus detection in natural and clinical samples is a complicated problem in research and diagnostics. There are different approaches for virus isolation and identification, including PCR, CRISPR/Cas technology, NGS, immunoassays, and cell-based assays. Following the development of genetic engineering methods, approaches that utilize cell cultures have become useful and informative. Molecular biology methods allow increases in the sensitivity and specificity of cell cultures for certain viruses and can be used to generate reporter cell lines. These cell lines express specific reporter proteins (e.g., GFP, luciferase, and CAT) in response to virus infection that can be detected in a laboratory setting. The development of genome editing and synthetic biology methods has given rise to new perspectives regarding the design of virus reporter systems in cell cultures. This review is aimed at describing both virology methods in general and examples of the development of cell-based methods that exist today.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Virus/crecimiento & desarrollo , Animales , Genes Reporteros , Ingeniería Genética , Humanos , Biología Sintética/métodos , Virología/métodos
7.
Hum Mol Genet ; 23(11): 2940-52, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24419320

RESUMEN

Fragile X Syndrome (FXS) is a learning disability seen in individuals who have >200 CGG•CCG repeats in the 5' untranslated region of the X-linked FMR1 gene. Such alleles are associated with a fragile site, FRAXA, a gap or constriction in the chromosome that is coincident with the repeat and is induced by folate stress or thymidylate synthase inhibitors like fluorodeoxyuridine (FdU). The molecular basis of the chromosome fragility is unknown. Previous work has suggested that the stable intrastrand structures formed by the repeat may be responsible, perhaps via their ability to block DNA synthesis. We have examined the replication dynamics of normal and FXS cells with and without FdU. We show here that an intrinsic problem with DNA replication exists in the FMR1 gene of individuals with FXS even in the absence of FdU. Our data suggest a model for chromosome fragility in FXS in which the repeat impairs replication from an origin of replication (ORI) immediately adjacent to the repeat. The fact that the replication problem occurs even in the absence of FdU suggests that this phenomenon may have in vivo consequences, including perhaps accounting for the loss of the X chromosome containing the fragile site that causes Turner syndrome (45, X0) in female carriers of such alleles. Our data on FRAXA may also be germane for the other FdU-inducible fragile sites in humans, that we show here share many common features with FRAXA.


Asunto(s)
Fragilidad Cromosómica , Replicación del ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Línea Celular , Sitios Frágiles del Cromosoma , Cromosomas Humanos X/química , Cromosomas Humanos X/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Heterocigoto , Humanos , Repeticiones de Trinucleótidos
8.
Epigenomes ; 8(2)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38651368

RESUMEN

BACKGROUND: One of the mechanisms regulating the biological activity of tumor necrosis factor (TNF) in cells is the co-expression of TNFR1/TNFR2 receptors. A model with a differential level of receptor expression is required to evaluate the contribution of these mechanisms. AIM: The development of a cellular model to compare the effects of TNF on cells depending on the presence of both receptors and TNFR2 alone. METHODS: TNFR1 absence modifications of ZR-75/1 and K-562 cell lines were obtained by TNFR1 knockout. The presence of deletions was confirmed by Sanger sequencing, and the absence of cell membrane receptor expression was confirmed by flow cytometry. The dose-dependent effect of TNF on intact and knockout cells was comparatively evaluated by the effect on the cell cycle, the type of cell death, and the profile of expressed genes. RESULTS: Knockout of TNFR1 resulted in a redistribution of TNFR2 receptors with an increased proportion of TNFR2+ cells in both lines and a multidirectional change in the density of expression in the lines (increased in K562 and decreased in ZR75/1). The presence of a large number of cells with high TNFR2 density in the absence of TNFR1 in the K562 cells was associated with greater sensitivity to TNF-stimulating doses and increased proliferation but did not result in a significant change in cell death parameters. A twofold increase in TNFR2+ cell distribution in this cell line at a reduced expression density in ZR75/1 cells was associated with a change in sensitivity to low cytokine concentrations in terms of proliferation; an overall increase in cell death, most pronounced at standard stimulating concentrations; and increased expression of the lymphocyte-activation gene groups, host-pathogen interaction, and innate immunity. CONCLUSIONS: The absence of TNFR1 leads to different variants of compensatory redistribution of TNFR2 in cellular models, which affects the type of cell response and the threshold level of sensitivity. The directionality of cytokine action modulation and sensitivity to TNF levels depends not only on the fraction of cells expressing TNFR2 but also on the density of expression.

9.
Hum Mutat ; 34(1): 157-66, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22887750

RESUMEN

Repeat expansion diseases result from expansion of a specific tandem repeat. The three fragile X-related disorders (FXDs) arise from germline expansions of a CGG•CCG repeat tract in the 5' UTR (untranslated region) of the fragile X mental retardation 1 (FMR1) gene. We show here that in addition to germline expansion, expansion also occurs in the somatic cells of both mice and humans carriers of premutation alleles. Expansion in mice primarily affects brain, testis, and liver with very little expansion in heart or blood. Our data would be consistent with a simple two-factor model for the organ specificity. Somatic expansion in humans may contribute to the mosaicism often seen in individuals with one of the FXDs. Because expansion risk and disease severity are related to repeat number, somatic expansion may exacerbate disease severity and contribute to the age-related increased risk of expansion seen on paternal transmission in humans. As little somatic expansion occurs in murine lymphocytes, our data also raise the possibility that there may be discordance in humans between repeat numbers measured in blood and that present in brain. This could explain, at least in part, the variable penetrance seen in some of these disorders.


Asunto(s)
Regiones no Traducidas 5'/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido , Alelos , Animales , Western Blotting , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Perfilación de la Expresión Génica , Heterocigoto , Humanos , Hígado/metabolismo , Masculino , Ratones , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga de MutS , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testículo/metabolismo
10.
Biochim Biophys Acta ; 1819(7): 802-10, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22245581

RESUMEN

The Fragile X-associated disorders (FXDs) and Friedreich ataxia (FRDA) are genetic conditions resulting from expansion of a trinucleotide repeat in a region of the affected gene that is transcribed but not translated. In the case of the FXDs, pathology results from expansion of CGG•CCG-repeat tract in the 5' UTR of the FMR1 gene, while pathology in FRDA results from expansion of a GAA•TTC-repeat in intron 1 of the FXN gene. Expansion occurs during gametogenesis or early embryogenesis by a mechanism that is not well understood. Associated Expansion then produces disease pathology in various ways that are not completely understood either. In the case of the FXDs, alleles with 55-200 repeats express higher than normal levels of a transcript that is thought to be toxic, while alleles with >200 repeats are silenced. In addition, alleles with >200 repeats are associated with a cytogenetic abnormality known as a fragile site, which is apparent as a constriction or gap in the chromatin that is seen when cells are grown in presence of inhibitors of thymidylate synthase. FRDA alleles show a deficit of the FXN transcript. This review will address the role of repeat-mediated chromatin changes in these aspects of FXD and FRDA disease pathology. This article is part of a Special Issue entitled: Chromatin in time and space.


Asunto(s)
Cromatina/metabolismo , Síndrome del Cromosoma X Frágil/genética , Ataxia de Friedreich/genética , Mutación , Animales , Cromatina/genética , Fragilidad Cromosómica , Expansión de las Repeticiones de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Ataxia de Friedreich/metabolismo , Silenciador del Gen , Heterocigoto , Humanos , Secuencias Repetidas en Tándem
11.
Front Med (Lausanne) ; 10: 1106085, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817775

RESUMEN

Recombinant adeno-associated virus (rAAV) is the leading platform for delivering genetic constructs in vivo. To date, three AAV-based gene therapeutic agents have been approved by the FDA and are used in clinical practice. Despite the distinct advantages of gene therapy development, it is clear that AAV vectors need to be improved. Enhancements in viral vectors are mainly associated with capsid protein modifications. However, there are other structures that significantly affect the AAV life cycle and transduction. The Rep proteins, in combination with inverted terminal repeats (ITRs), determine viral genome replication, encapsidation, etc. Moreover, transgene cassette expression in recombinant variants is directly related to AAV production and transduction efficiency. This review discusses the ways to improve AAV vectors by modifying ITRs, a transgene cassette, and the Rep proteins.

12.
Noncoding RNA Res ; 6(1): 1-7, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33426406

RESUMEN

FRAXopathies are caused by the expansion of the CGG repeat in the 5'UTR of the FMR1 gene, which encodes the protein responsible for the synthesis of FMRP. This mutation leads to dramatic changes in FMRP expression at both the mRNA and protein levels. Evidence is emerging that changes in FMR1 mRNA expression can lead to the dysregulation of the miRNAs that target its 3'UTR. In the present work, B-lymphocyte cell lines obtained from patients with FRAXopathies were used, and a wide variety of FMR1 gene activities were observed, allowing the identification of the relationships between FMR1 dysregulation and miRNA activity. We studied the expression levels of eight miRNAs that target the FMR1 gene. To prove the interaction of the studied miRNAs with FMR1, a plasmid was constructed that possesses three primary structures: the miRNA gene, with expression driven by an inducible promoter; a constitutively expressed FusionRed reporter; and an eGFP reporter followed by the 3'UTR of the FMR1 gene. We evaluated changes in miRNA expression in response to alterations in FMR1 gene activity in a model cell line as well as interactions with some miRNAs with the FMR1 3'UTR.

13.
Mol Cytogenet ; 14(1): 47, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34607577

RESUMEN

BACKGROUND: There are many reports on rearrangements occurring separately in the regions of chromosomes 9p and 15q affected in the case under study. 15q duplication syndrome is caused by the presence of at least one extra maternally derived copy of the Prader-Willi/Angelman critical region. Trisomy 9p is the fourth most frequent chromosome anomaly with a clinically recognizable syndrome often accompanied by intellectual disability. Here we report a new case of a patient with maternally derived unique complex sSMC resulting in partial trisomy of both chromosomes 9 and 15 associated with intellectual disability. CASE PRESENTATION: We characterise a supernumerary derivative chromosome 15: 47,XY,+der(15)t(9;15)(p21.2;q13.2), likely resulting from 3:1 malsegregation during maternal gametogenesis. Chromosomal analysis showed that a phenotypically normal mother is a carrier of balanced translocation t(9;15)(p21.1;q13.2). Her 7-year-old son showed signs of intellectual disability and a number of physical abnormalities including bilateral cryptorchidism and congenital megaureter. The child's magnetic resonance imaging showed changes in brain volume and in structural and functional connectivity revealing phenotypic changes caused by the presence of the extra chromosome material, whereas the mother's brain MRI was normal. Sequence analyses of the microdissected der(15) chromosome detected two breakpoint regions: HSA9:25,928,021-26,157,441 (9p21.2 band) and HSA15:30,552,104-30,765,905 (15q13.2 band). The breakpoint region on chromosome HSA9 is poor in genetic features with several areas of high homology with the breakpoint region on chromosome 15. The breakpoint region on HSA15 is located in the area of a large segmental duplication. CONCLUSIONS: We discuss the case of these phenotypic and brain MRI features in light of reported signatures for 9p partial trisomy and 15 duplication syndromes and analyze how the genomic characteristics of the found breakpoint regions have contributed to the origin of the derivative chromosome. We recommend MRI for all patients with a developmental delay, especially in cases with identified rearrangements, to accumulate more information on brain phenotypes related to chromosomal syndromes.

14.
Front Mol Biosci ; 8: 821506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35118120

RESUMEN

The novel coronavirus disease COVID-19 has become one of the most socially significant infections. One of the main models for COVID-19 pathogenesis study and anti-COVID-19 drug development is laboratory animals sensitive to the virus. Herein, we report SARS-CoV-2 infection in novel transgenic mice conditionally expressing human ACE2 (hACE2), with a focus on viral distribution after intranasal inoculation. Transgenic mice carrying hACE2 under the floxed STOP cassette [(hACE2-LoxP(STOP)] were mated with two types of Cre-ERT2 strains (UBC-Cre and Rosa-Cre). The resulting offspring with temporal control of transgene expression were treated with tamoxifen to induce the removal of the floxed STOP cassette, which prevented hACE2 expression. Before and after intranasal inoculation, the mice were weighed and clinically examined. On Days 5 and 10, the mice were sacrificed for isolation of internal organs and the further assessment of SARS-CoV-2 distribution. Intranasal SARS-CoV-2 inoculation in hACE2-LoxP(STOP)×UBC-Cre offspring resulted in weight loss and death in 6 out of 8 mice. Immunostaining and focus formation assays revealed the most significant viral load in the lung, brain, heart and intestine samples. In contrast, hACE2-LoxP(STOP) × Rosa-Cre offspring easily tolerated the infection, and SARS-CoV-2 was detected only in the brain and lungs, whereas other studied tissues had null or negligible levels of the virus. Histological examination revealed severe alterations in the lungs, and mild changes were observed in the brain tissues. Notably, no changes were observed in mice without tamoxifen treatment. Thus, this novel murine model with the Cre-dependent activation of hACE2 provides a useful and safe tool for COVID-19 studies.

15.
Front Mol Biosci ; 7: 616798, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537341

RESUMEN

SARS-CoV-2, which emerged in Wuhan (China), has become a great worldwide problem in 2020 and has led to more than 1,000,000 deaths worldwide. Many laboratories are searching for ways to fight this pandemic. We studied the action of the cellular antiviral protein tetherin, which is encoded by the BST2 gene. We deleted the transmembrane domain-encoding part of the gene in the Vero cell line. The transmembrane domain is a target for virus-antagonizing proteins. We showed a decrease in SARS-CoV-2 in cells with deleted transmembrane BST2 domains compared to the initial Vero cell line. Similar results were obtained for SARS-CoV and avian influenza virus. This finding may help the development of antiviral therapies competitively targeting the transmembrane domain of tetherin with viral-antagonizing proteins.

16.
J Hered ; 100 Suppl 1: S42-53, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19546120

RESUMEN

High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.


Asunto(s)
Mapeo Cromosómico/veterinaria , Cromosomas Artificiales Bacterianos/genética , Perros/genética , Zorros/genética , Visón/genética , Animales , Genoma , Genómica/métodos , Hibridación Fluorescente in Situ
17.
Genes (Basel) ; 10(11)2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31671864

RESUMEN

: Bovidae, the largest family in Pecora infraorder, are characterized by a striking variability in diploid number of chromosomes between species and among individuals within a species. The bovid X chromosome is also remarkably variable, with several morphological types in the family. Here we built a detailed chromosome map of musk ox (Ovibosmoschatus), a relic species originating from Pleistocene megafauna, with dromedary and human probes using chromosome painting. We trace chromosomal rearrangements during Bovidae evolution by comparing species already studied by chromosome painting. The musk ox karyotype differs from the ancestral pecoran karyotype by six fusions, one fission, and three inversions. We discuss changes in pecoran ancestral karyotype in the light of new painting data. Variations in the X chromosome structure of four bovid species nilgai bull (Boselaphustragocamelus), saola (Pseudoryxnghetinhensis), gaur (Bosgaurus), and Kirk's Dikdik (Madoquakirkii) were further analyzed using 26 cattle BAC-clones. We found the duplication on the X in saola. We show main rearrangements leading to the formation of four types of bovid X: Bovinae type with derived cattle subtype formed by centromere reposition and Antilopinae type with Caprini subtype formed by inversion in XSB3.


Asunto(s)
Antílopes/genética , Cromosoma X/genética , Animales , Pintura Cromosómica , Evolución Molecular , Cariotipo
18.
Biomed Res Int ; 2017: 3582601, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209628

RESUMEN

Fragile X syndrome is the most common cause of inherited intellectual disability in humans. It is a result of CGG repeat expansion in the 5' untranslated region (5' UTR) of the FMR1 gene. This gene encodes the FMRP protein that is involved in neuronal development. Repeat expansion leads to heterochromatinization of the promoter, gene silencing, and the subsequent absence of FMRP. To date, there is no specific therapy for the syndrome. All treatments in clinic practice provide symptomatic therapy. The development of drug therapy for Fragile X syndrome treatment is connected with the search for inhibitors of enzymes that are responsible for heterochromatinization. Here, we report a weak transcriptional activity of the FMR1 gene and the absence of FMRP protein after Fragile X syndrome cell lines treatment with two FDA approved inhibitors of histone deacetylases, romidepsin and vorinostat. We demonstrate that romidepsin, an inhibitor of class I histone deacetylases, does not activate FMR1 expression in patient cell cultures, whereas vorinostat, an inhibitor of classes I and II histone deacetylases, activates a low level of FMR1 expression in some patient cell lines.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/administración & dosificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Depsipéptidos/farmacología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Regulación de la Expresión Génica/efectos de los fármacos , Heterocromatina/genética , Humanos , Ácidos Hidroxámicos/farmacología , Masculino , Regiones Promotoras Genéticas/genética , Expansión de Repetición de Trinucleótido/genética , Vorinostat
19.
Mol Cytogenet ; 10: 43, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29177011

RESUMEN

BACKGROUND: Small supernumerary marker chromosomes can be derived from autosomes and sex chromosomes and can accompany chromosome pathologies, such as Turner syndrome. CASE PRESENTATION: Here, we present a case report of a patient with mosaic Turner syndrome and Dandy-Walker syndrome carrying a marker chromosome. We showed the presence of the marker chromosome in 33.8% of blood cells. FISH of the probe derived from the marker chromosome by microdissection revealed that it originated from the centromeric region of chromosome X. Additionally, we showed no telomeric sequences and no XIST sequence in the marker chromosome. This is the first report of these two syndromes accompanied by the presence of a marker chromosome. CONCLUSION: Marker chromosome was X-derived and originated from centromeric region. Patient has mild symptoms but there is no XIST gene in marker chromosome. TRIAL REGISTRATION: CPG137. Registered 03 March 2017.

20.
Mol Syndromol ; 8(2): 110-114, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28611553

RESUMEN

In this report, we describe a molecular cytogenetic study of a family burdened with intellectual disability (ID) and suicide. Our study revealed that the mother has a heterozygous premutation in the FMR1 gene and supernumerary X chromosomes as well as X-derived marker chromosomes. Both of her sons have ID and a normal chromosome number. One of the sons has fragile X syndrome, and the other has ID of an unclear nature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA