Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 676: 918-926, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39068836

RESUMEN

Developing novelplatinum (Pt)-based hydrogen evolution reaction (HER) catalysts with high activity and stability is significant for the ever-broader applications of hydrogen energy. However, achieving precise modulation of the ultrafine Pt nanoparticles coordination environment in conventional catalysts is challenging. In this work, we developed a unique "ring-shaped cavity induced" strategy to anchor the Ptx through the ring-shaped cavity of polyoxometalates (POMs) Na33H7P8W48O184 (denoted as P8W48). The NayPtx[P8W48O184] (PtxP8W48) was in-situ converted into abundant Pt/WO3-x heterostructure with Pt (∼2 nm) and highly depressed Pt-O-W heterointerfaces. Pt/WO3-x nanoparticles supported on highly conductive rGO exhibit superior HER activity. The overpotentials of the catalyst are only 2.8 mV and 4.7 mV at 10 mA·cm-2 in acidic water and seawater, far superior to commercial 20 % Pt/C catalyst. Additionally, the catalyst can be stabilized at a current density of 30 mA·cm-2 for 180 h. This study provides a feasible strategy for rational design of Pt-based catalysts for renewable energy applications.

2.
J Colloid Interface Sci ; 667: 184-191, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38636220

RESUMEN

Accurately regulating ultrafine molybdenum carbide (MoC)-based catalysts is a significant challenge in the rational design of hydrogen evolution reaction (HER) electrocatalysts. Herein, under the guidance of the first principle calculations, we proposed an in-situ polyoxometalate-confined strategy for creating uniformly distributed ultrafine Co-MoC bimetallic nanoparticles in porous carbon nanostars, with the assistance of precisely designed metal-organic framework (MOF). The Co-MoC@C electrocatalyst has a high specific surface area of 969 m2·g-1 because of the conductive carbon substrate with abundant mesopores, which makes for exposing more active sites of Co-MoC nanocrystals (∼1.5 nm) and facilitating electron/ion transport. Thus, Co-MoC@C electrocatalyst shows the excellent electrochemical activity with overpotentials of 88.4 mV and 66.6 mV at a current density of 10 mA·cm-2 under acidic and alkaline conditions, respectively. The in-situ polyoxometalate-confined strategy will provide a new guideline for the design and preparation of efficient HER electrocatalysts.

3.
J Colloid Interface Sci ; 645: 188-199, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37148684

RESUMEN

Manufacturing low-cost, high-performance and earth-rich catalysts for hydrogen evolution (HER) and oxygen evolution reactions (OER) is critical to achieving sustainable green hydrogen production. Herein, we utilize lacunary Keggin-structure [PW9O34]9- (PW9) as a molecular pre-assembly platform to anchor Ni within a single PW9 molecule by vacancy-directed and nucleophile-induced effects for the uniform dispersion of Ni at the atomic level. The chemical coordination of Ni with PW9 can avoid the aggregation of Ni and favor the exposure of active sites. The Ni3S2 confined by WO3 prepared from controlled sulfidation of Ni6PW9/Nickel Foam (Ni6PW9/NF) exhibited excellent catalytic activity in both 0.5 M H2SO4 and 1 M KOH solutions, which required only 86 mV and 107 mV overpotentials for HER at a current density of 10 mA∙cm-2 and 370 mV for OER at 200 mA∙cm-2. This is attributed to the good dispersion of Ni at the atomic level induced by trivacant PW9 and the enhanced intrinsic activity by synergistic effect of Ni and W. Therefore, the construction of active phase from the atomic level is insightful to the rational design of dispersed and efficient electrolytic catalysts.

4.
J Colloid Interface Sci ; 645: 276-286, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37150001

RESUMEN

Herein, a novel in-situ "atomic binding to heterointerface" strategy is proposed to obtain Co2P/WC@NC/CNTs catalyst with abundant heterointerface between cobalt phosphide and tungsten carbide (Co2P/WC) by the polyoxometalates (POMs)-based metal-organic frameworks (MOFs) precursor. The natural quasi interfaces in K10[Co4(H2O)2(PW9O34)2] molecule crucially guide the abundant Co2P/WC heterointerfaces down to atomic level. Meanwhile, MOFs cages can effectively encapsulate nanosized POMs at molecular level to control the size and dispersion of Co2P/WC nanoparticle, while carbon nanotubes (CNTs) enhance conductivity at nanoscale level. The interfacial electronic modulation between Co2P and WC lowering the energy barrier of the rate determining step, thus Co2P/WC@NC/CNTs showed reasonable hydrogen evolution reaction (HER) activity and stability in all-pH media including sea water. This work provides a "bottom-up" synthetic strategy for confined heterostructures, thus offering the prospect for more efficient interfacial charge modulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA