Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Br J Cancer ; 122(11): 1638-1648, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32242101

RESUMEN

BACKGROUND: Despite the great clinical response to the first-line chemotherapeutics, metastasis still happens among most of the ovarian cancer patients within 2 years. METHODS: Using multiple human ovarian cancer cell lines, a transwell co-culture system of the carboplatin or VP-16-challenged feeder and receptor cells was established to demonstrate the chemotherapy-exacerbated migration. The migration and cancer stem cell (CSC)-like characteristics were determined by wound healing, transwell migration, flow cytometry and sphere formation. mRNA and protein expression were identified by qPCR and western blot. Bioinformatics analysis was used to investigate the differentially expressed genes. GLI1 expression in tissue samples was analysed by immunohistochemistry. RESULTS: Chemotherapy was found to not only kill tumour cells, but also trigger the induction of CSC-like traits and the migration of ovarian cancer cells. EMT markers Vimentin and Snail in receptor cells were upregulated in the microenvironment of chemotherapy-challenged feeder cells. The transcription factor GLI1 was upregulated by chemotherapy in both clinical samples and cell lines. Follow-up functional experiments illustrated that inhibiting GLI1 reversed the chemotherapy-exacerbated CSC-like traits, including CD44 and CD133, as well as prevented the migration of ovarian cancer cells. CONCLUSIONS: Targeting GLI1 may improve clinical benefits in the chemotherapy-exacerbated metastasis in ovarian cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Ováricas/patología , Proteína con Dedos de Zinc GLI1/metabolismo , Carboplatino/farmacología , Transición Epitelial-Mesenquimal , Etopósido/farmacología , Femenino , Humanos , Células Madre Neoplásicas/patología
2.
Molecules ; 25(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182574

RESUMEN

A pyrimidine moiety exhibiting a wide range of pharmacological activities has been employed in the design of privileged structures in medicinal chemistry. To prepare libraries of novel heterocyclic compounds with potential biological activities, a series of novel 2-(pyridin-2-yl) pyrimidine derivatives were designed, synthesized and their biological activities were evaluated against immortalized rat hepatic stellate cells (HSC-T6). Fourteen compounds were found to present better anti-fibrotic activities than Pirfenidone and Bipy55'DC. Among them, compounds ethyl 6-(5-(p-tolylcarbamoyl)pyrimidin-2-yl)nicotinate (12m) and ethyl 6-(5-((3,4-difluorophenyl)carbamoyl)pyrimidin-2-yl)nicotinate (12q) show the best activities with IC50 values of 45.69 µM and 45.81 µM, respectively. Furthermore, the study of anti-fibrosis activity was evaluated by Picro-Sirius red staining, hydroxyproline assay and ELISA detection of Collagen type I alpha 1 (COL1A1) protein expression. Our study showed that compounds 12m and 12q effectively inhibited the expression of collagen, and the content of hydroxyproline in cell culture medium in vitro, indicating that compounds 12m and 12q might be developed the novel anti-fibrotic drugs.


Asunto(s)
Colágeno Tipo I/metabolismo , Fibrosis/tratamiento farmacológico , Células Estrelladas Hepáticas/efectos de los fármacos , Prolil Hidroxilasas/química , Pirimidinas/química , Animales , Línea Celular Tumoral , Proliferación Celular , Cadena alfa 1 del Colágeno Tipo I , Ensayo de Inmunoadsorción Enzimática , Concentración 50 Inhibidora , Ratas
3.
Mol Cell Biochem ; 461(1-2): 151-158, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31352611

RESUMEN

Fluorouracil (5-FU) which has been widely used in postoperative adjuvant therapy in patients with colon cancer, remains the main backbone of combination treatment of patients with colon cancer. However, the efficacy of 5-FU alone in colorectal cancer patients with BRAFV600E is not clear. In this study, we demonstrated that BRAFV600E confers sensitivity to 5-FU in vitro and in vivo xenograft model, using the paired isogenic colorectal cancer cell lines RKO with either BRAF Wild Type (WT)(+/-) or mutant (Mut) (600E/-). Our results revealed 5-FU preferably induces marked apoptosis in BRAF-mutant colorectal cancer cells, through attenuating expression of Bcl-xL and activation caspase-3/9 pathway, eventually conferring the anti-tumor efficacy of 5-FU in vitro and in vivo. Meanwhile, expression of Bcl-xL remained unchanged in BRAF WT group after treatment of 5-FU, although low extent of anti-tumor activity of 5-FU still being observed. In conclusion, these results provided a better understanding of clinical outcome of 5-FU between BRAF WT and mutant colorectal cancer patients, and suggested the inhibition of Bcl-xL might present an alternative strategy to enhance the therapeutic efficacy of 5-FU in colorectal cancer patients with BRAF mutation.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/genética , Regulación hacia Abajo/efectos de los fármacos , Fluorouracilo/farmacología , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteína bcl-X/genética , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Ratones Desnudos , Proteína bcl-X/metabolismo
4.
J Inflamm Res ; 14: 85-95, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33488110

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the gastrointestinal tract. Oxidative stress plays a pivotal role in the pathogenesis of IBD. Selenium-containing amino acids reportedly have anti-oxidative and anti-inflammatory properties, but it remains unknown if selenium-containing amino acids can be used to treat IBD. This study aimed to investigate the effects of two selenium-containing amino acids - selenocysteine and selenocystine - on oxidative stress and chronic inflammation in a mouse model of dextran sulfate sodium (DSS)-induced IBD. METHODOLOGY: C57BL/6 mice were randomly assigned to the following six groups: control, DSS, DSS+selenocysteine, DSS+selenocystine, DSS+sodium selenite, and DSS+N-acetylcysteine (NAC). IBD was induced by 3% DSS. Pro-inflammatory cytokines [interleukin-1ß (IL-1ß), monocyte chemotactic protein 1 (MCP-1), IL-6, and tumor necrosis factor-α (TNF-α)] and markers for oxidative and anti-oxidative stress [malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione peroxidase (GPx)] were measured using immunohistochemical analysis. RESULTS: Selenocysteine and selenocystine significantly attenuated IBD-related symptoms, including preventing weight loss, decreasing disease activity index (DAI) scores, and increasing colon length. Selenocysteine and selenocystine significantly ameliorated the DSS-induced oxidative stress, as demonstrated by a reduction in ROS and MDA activity and an increase in SOD and GPx activity. IL-1, MCP-1, IL-6, and TNF-α levels were significantly increased in the IBD mice, while treatment with the selenium-containing amino acids significantly reduced the levels of these pro-inflammatory cytokines. In vivo safety analysis showed minimal side effects of the selenium-containing amino acids. CONCLUSION: We found that selenocysteine and selenocystine ameliorated DSS-induced IBD via reducing oxidative stress and intestinal inflammation, indicating that selenium-containing amino acids could be a novel therapeutic option for patients with IBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA