Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 611(7937): 688-694, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352223

RESUMEN

Metal halide perovskites are attracting a lot of attention as next-generation light-emitting materials owing to their excellent emission properties, with narrow band emission1-4. However, perovskite light-emitting diodes (PeLEDs), irrespective of their material type (polycrystals or nanocrystals), have not realized high luminance, high efficiency and long lifetime simultaneously, as they are influenced by intrinsic limitations related to the trade-off of properties between charge transport and confinement in each type of perovskite material5-8. Here, we report an ultra-bright, efficient and stable PeLED made of core/shell perovskite nanocrystals with a size of approximately 10 nm, obtained using a simple in situ reaction of benzylphosphonic acid (BPA) additive with three-dimensional (3D) polycrystalline perovskite films, without separate synthesis processes. During the reaction, large 3D crystals are split into nanocrystals and the BPA surrounds the nanocrystals, achieving strong carrier confinement. The BPA shell passivates the undercoordinated lead atoms by forming covalent bonds, and thereby greatly reduces the trap density while maintaining good charge-transport properties for the 3D perovskites. We demonstrate simultaneously efficient, bright and stable PeLEDs that have a maximum brightness of approximately 470,000 cd m-2, maximum external quantum efficiency of 28.9% (average = 25.2 ± 1.6% over 40 devices), maximum current efficiency of 151 cd A-1 and half-lifetime of 520 h at 1,000 cd m-2 (estimated half-lifetime >30,000 h at 100 cd m-2). Our work sheds light on the possibility that PeLEDs can be commercialized in the future display industry.

2.
Molecules ; 26(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576916

RESUMEN

Perovskite is attracting considerable interest because of its excellent semiconducting properties and optoelectronic performance. In particular, lead perovskites have been used extensively in photovoltaic, photodetectors, thin-film transistors, and various electronic applications. On the other hand, the elimination of lead is essential because of its strong toxicity. This paper reports the synthesis of lead-free calcium titanate perovskite (CaTiO3) using a solution-processed combustion method. The chemical and morphological properties of CaTiO3 were examined as a function of its thickness by scanning electron microscopy, X-ray diffraction (XRD), atomic force microscopy, X-ray photoelectron spectroscopy, and ultraviolet-visible spectrophotometry. The analysis showed that thicker films formed by a cumulative coating result in larger grains and more oxygen vacancies. Furthermore, thickness-dependent hysteresis behaviors were examined by fabricating a metal-CaTiO3-metal structure. The electrical hysteresis could be controlled over an extremely low voltage operation, as low as 100 mV, by varying the grain size and oxygen vacancies.

3.
Biochem Biophys Res Commun ; 489(2): 217-222, 2017 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-28551405

RESUMEN

Alkyl hydroperoxide reductase E (AhpE) is a member of the peroxidase family of enzymes that catalyse the reduction of peroxides, however its structural and functional roles are still unclear in details. In this study, we used the Thermococcus kodakarensis AhpE-like protein as a model to investigate structure-function relationships including the molecular properties of DNA binding activity. Multiple sequence alignment, structural comparison and biochemical analyses revealed that TkAhpE includes conserved peroxidase residues in the active site, and exhibits peroxidase activity with structure-dependent holdase chaperone function. Following electrophoretic mobility shift assays and electron microscopy analysis demonstrated distinctive binding features of TkAhpE to the DNA showing that their dimeric conformer can bind to the double-stranded DNA, but not to the single-stranded DNA, indicating its striking molecular features to double-stranded DNA-specific interactions. Based on our results, we provided that TkAhpE is a multifunctional peroxidase displaying structure-dependent molecular chaperone and DNA binding activities.


Asunto(s)
Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Thermococcus/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia
4.
Biochem Biophys Res Commun ; 469(4): 1028-33, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26723255

RESUMEN

Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16-1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stress by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions.


Asunto(s)
Proteínas Bacterianas/química , Daño del ADN , ADN/química , ADN/genética , Especies Reactivas de Oxígeno/química , Sitios de Unión , Respuesta al Choque Térmico , Calor , Estrés Oxidativo , Unión Proteica , Temperatura
5.
ACS Appl Mater Interfaces ; 16(9): 11758-11766, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391255

RESUMEN

Phototransistors have gained significant attention in diverse applications such as photodetectors, image sensors, and neuromorphic devices due to their ability to control electrical characteristics through photoresponse. The choice of photoactive materials in phototransistor research significantly impacts its development. In this study, we propose a novel device that emulates artificial synaptic behavior by leveraging the off-current of a phototransistor. We utilize a p-type organic semiconductor, dinaphtho[2,3-b:2',3'- f]thieno[3,2-b]thiophene (DNTT), as the channel material and dope it with the organic semiconductor 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) on the DNTT transistor. Under light illumination, the general DNTT transistor shows no change in off-current, except at 400 nm wavelength, whereas the TPBi-doped DNTT phototransistor exhibits increased off-current across all wavelength bands. Notably, DNTT phototransistors demonstrate broad photoresponse characteristics in the wavelength range of 400-1000 nm. We successfully simulate artificial synaptic behavior by differentiating the level of off-current and achieving a recognition rate of over 70% across all wavelength bands.

6.
Nanotechnology ; 24(36): 365706, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23958735

RESUMEN

A green approach for the one-step electrochemical synthesis of water dispersible graphene is reported. An alkaline solution of 6-amino-4-hydroxy-2-naphthalene-sulfonic acid (ANS) serves the role of electrolyte as well as surface modifier. High-purity graphite rods are used as electrodes which can be exfoliated under a constant electrical potential (∼20 V) to form ANS functionalized graphene (ANEG). The aqueous dispersion of ANEG obeyed Beer's law at moderate concentrations, as evidenced from ultraviolet-visible spectroscopy analysis. X-ray diffraction analysis suggests complete exfoliation of graphite into graphene. Fourier transform infrared and x-ray photoelectron spectroscopy not only confirm the functionalization of graphene with ANS, but also suggest the formation of oxygen containing functional groups on the surface of ANEG. Raman spectra analysis indicates the presence of defects in ANEG as compared to pure graphite. Cyclic voltammetry and charge-discharge measurements of ANEG using three electrode systems show a specific capacitance of 115 F g(-1) at a current density of 4 A g(-1). The ANEG electrode exhibits 93% retention in specific capacitance after 1000 charge-discharge cycles, confirming its utility as a green energy storage electrode material.

7.
Nanoscale ; 15(3): 1136-1144, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35880665

RESUMEN

Changes in electronic and compositional structures of Pt-Ni electrocatalysts with 44% of Ni fraction with repeated chemical dealloying have been studied. By comparing the Pt-enriched surfaces formed using hydroquinone and sulfuric acid as a leaching agent, we found that hydroquinone generated Pt-enriched surfaces exhibit the highest oxygen reduction reaction (ORR) activity after repeating the treatment twice. In particular, it was found that while sulfuric acid causes an uncontrollable dissolution of Ni clusters, the unique selectivity of hydroquinone allows the preferential dissolution of Ni atoms alloyed with Pt. Despite its wide usage in the field, the results show that traditional acid leaching is unsuitable for Pt-Ni alloys with a high Ni content and an incomplete alloying level. We finally proved that the unique and lasting selectivity of hydroquinone enables an incompletely alloyed Pt-Ni catalyst to obtain a highly ORR active Pt shell region without an extensive loss of Ni.

8.
Adv Mater ; 35(39): e2304533, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37390092

RESUMEN

The small nanoparticle size and long-chain ligands in colloidal metal halide perovskite quantum dots (PeQDs) cause charge confinement, which impedes exciton dissociation and carrier extraction in PeQD solar cells, so they have low short-circuit current density Jsc , which impedes further increases in their power conversion efficiency (PCE). Here, a re-assembling process (RP) is developed for perovskite nanocrystalline (PeNC) films made of colloidal perovskite nanocrystals to increase Jsc in PeNC solar cells. The RP of PeNC films increases their crystallite size and eliminates long-chain ligands, and thereby overcomes the charge confinement in PeNC films. These changes facilitate exciton dissociation and increase carrier extraction in PeNC solar cells. By use of this method, the gradient-bandgap PeNC solar cells achieve a Jsc = 19.30 mA cm-2 without compromising the photovoltage, and yield a high PCE of 16.46% with negligible hysteresis and good stability. This work provides a new strategy to process PeNC films and pave the way for high performance PeNC optoelectronic devices.

9.
Polymers (Basel) ; 14(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35808632

RESUMEN

To increase the human lifespan, healthcare monitoring devices that diagnose diseases and check body conditions have attracted considerable interest. Commercial AgCl-based wet electrodes with the advantages of high conductivity and strong adaptability to human skin are considered the most frequently used electrode material for healthcare monitoring. However, commercial AgCl-based wet electrodes, when exposed for a long period, cause an evaporation of organic solvents, which could reduce the signal-to-noise ratio of biosignals and stimulate human skin. In this context, we demonstrate a dry electrode for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based blended polymer electrode using a combination of PEDOT:PSS, waterborne polyurethane (WPU) and ethylene glycol (EG) that could be reused for a long period of time to detect electrocardiography (ECG) and electromyography (EMG). Both ECG and EMG are reliably detected by the wireless real-time monitoring system. In particular, the proposed dry electrode detects biosignals without deterioration for over 2 weeks. Additionally, a double layer of a polyimide (PI) substrate and fluorinated polymer CYTOP induces the strong waterproof characteristics of external liquids for the proposed dry electrodes, having a low surface energy of 14.49 mN/m. In addition, the proposed electrode has excellent degradability in water; it dissolves in hot water at 60 °C.

10.
Adv Mater ; 34(31): e2203040, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35697021

RESUMEN

Intrinsically stretchable organic light-emitting diodes (ISOLEDs) are becoming essential components of wearable electronics. However, the efficiencies of ISOLEDs have been highly inferior compared with their rigid counterparts, which is due to the lack of ideal stretchable electrode materials that can overcome the poor charge injection at 1D metallic nanowire/organic interfaces. Herein, highly efficient ISOLEDs that use graphene-based 2D-contact stretchable electrodes (TCSEs) that incorporate a graphene layer on top of embedded metallic nanowires are demonstrated. The graphene layer modifies the work function, promotes charge spreading, and impedes inward diffusion of oxygen and moisture. The work function (WF) of 3.57 eV is achieved by forming a strong interfacial dipole after deposition of a newly designed conjugated polyelectrolyte with crown ether and anionic sulfonate groups on TCSE; this is the lowest value ever reported among ISOLEDs, which overcomes the existing problem of very poor electron injection in ISOLEDs. Subsequent pressure-controlled lamination yields a highly efficient fluorescent ISOLED with an unprecedently high current efficiency of 20.3 cd A-1 , which even exceeds that of an otherwise-identical rigid counterpart. Lastly, a 3 inch five-by-five passive matrix ISOLED is demonstrated using convex stretching. This work can provide a rational protocol for designing intrinsically stretchable high-efficiency optoelectronic devices with favorable interfacial electronic structures.

11.
Nat Commun ; 12(1): 3559, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117235

RESUMEN

Various large-area growth methods for two-dimensional transition metal dichalcogenides have been developed recently for future electronic and photonic applications. However, they have not yet been employed for synthesizing active pixel image sensors. Here, we report on an active pixel image sensor array with a bilayer MoS2 film prepared via a two-step large-area growth method. The active pixel of image sensor is composed of 2D MoS2 switching transistors and 2D MoS2 phototransistors. The maximum photoresponsivity (Rph) of the bilayer MoS2 phototransistors in an 8 × 8 active pixel image sensor array is statistically measured as high as 119.16 A W-1. With the aid of computational modeling, we find that the main mechanism for the high Rph of the bilayer MoS2 phototransistor is a photo-gating effect by the holes trapped at subgap states. The image-sensing characteristics of the bilayer MoS2 active pixel image sensor array are successfully investigated using light stencil projection.

12.
Adv Mater ; 32(37): e2001989, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32715525

RESUMEN

Conventional organic light-emitting devices without an encapsulation layer are susceptible to degradation when exposed to air, so realization of air-stable intrinsically-stretchable display is a great challenge because the protection of the devices against penetration of moisture and oxygen is even more difficult under stretching. An air-stable intrinsically-stretchable display that is composed of an intrinsically-stretchable electroluminescent device (SELD) integrated with a stretchable color-conversion layer (SCCL) that contains perovskite nanocrystals (PeNCs) is proposed. PeNCs normally decay when exposed to air, but they become resistant to this decay when dispersed in a stretchable elastomer matrix; this change is a result of a compatibility between capping ligands and the elastomer matrix. Counterintuitively, the moisture can efficiently passivate surface defects of PeNCs, to yield significant increases in both photoluminescence intensity and lifetime. A display that can be stretched up to 180% is demonstrated; it is composed of an air-stable SCCL that down-converts the SELD's blue emission and reemits it as green. The work elucidates the basis of moisture-assisted surface passivation of PeNCs and provides a promising strategy to improve the quantum efficiency of PeNCs with the aid of moisture, which allows PeNCs to be applied for air-stable stretchable displays.

13.
Adv Sci (Weinh) ; 7(19): 2001014, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33042741

RESUMEN

Despite organic/inorganic lead halide perovskite solar cells becoming one of the most promising next-generation photovoltaic materials, instability under heat and light soaking remains unsolved. In this work, a highly hydrophobic cation, perfluorobenzylammonium iodide (5FBzAI), is designed and a 2D perovskite with reinforced intermolecular interactions is engineered, providing improved passivation at the interface that reduces charge recombination and enhances cell stability compared with benchmark 2D systems. Motivated by the strong halogen bond interaction, (5FBzAI)2PbI4 used as a capping layer aligns in in-plane crystal orientation, inducing a reproducible increase of ≈60 mV in the V oc, a twofold improvement compared with its analogous monofluorinated phenylethylammonium iodide (PEAI) recently reported. This endows the system with high power conversion efficiency of 21.65% and extended operational stability after 1100 h of continuous illumination, outlining directions for future work.

14.
Nat Commun ; 11(1): 3378, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632144

RESUMEN

Perovskite light-emitting diodes (PeLEDs) based on three-dimensional (3D) polycrystalline perovskites suffer from ion migration, which causes overshoot of luminance over time during operation and reduces its operational lifetime. Here, we demonstrate 3D/2D hybrid PeLEDs with extremely reduced luminance overshoot and 21 times longer operational lifetime than 3D PeLEDs. The luminance overshoot ratio of 3D/2D hybrid PeLED is only 7.4% which is greatly lower than that of 3D PeLED (150.4%). The 3D/2D hybrid perovskite is obtained by adding a small amount of neutral benzylamine to methylammonium lead bromide, which induces a proton transfer from methylammonium to benzylamine and enables crystallization of 2D perovskite without destroying the 3D phase. Benzylammonium in the perovskite lattice suppresses formation of deep-trap states and ion migration, thereby enhances both operating stability and luminous efficiency based on its retardation effect in reorientation.

15.
RSC Adv ; 9(50): 29232-29237, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35528395

RESUMEN

Au@Ag core-shell structures have received particular interest due to their localized surface plasmon resonance properties and great potential as oxygen reduction reaction catalysts and building blocks for self-assembly. In this study, Au@Ag core-shell nanocubes (Au@AgNCs) were fabricated in a facile manner via stepwise Ag reduction on Au nanoparticles (AuNPs). The size of the Au@AgNCs and their optical properties can be simply modulated by changing the Ag shell thickness. Structural characterization has been carried out by TEM, SAED, and XRD. The metal-induced fluorescence properties of probe molecules near the Au@AgNCs were measured during sedimentation of the Au@AgNCs. The unique ring-like building block of Au@AgNCs has dual optical functions as a fluorescence quencher or fluorescence enhancement medium depending on the assembled regions.

16.
ACS Nano ; 12(3): 2883-2892, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29494128

RESUMEN

We have achieved high-efficiency polycrystalline perovskite light-emitting diodes (PeLEDs) based on formamidinium (FA) and cesium (Cs) mixed cations without quantum dot synthesis. Uniform single-phase FA1- xCs xPbBr3 polycrystalline films were fabricated by one-step formation with various FA:Cs molar proportions; then the influences of chemical composition on film morphology, crystal structure, photoluminescence (PL), and electroluminescence (EL) were systematically investigated. Incorporation of Cs+ cations in FAPbBr3 significantly reduced the average grain size (to 199 nm for FA:Cs = 90:10) and trap density; these changes consequently increased PL quantum efficiency (PLQE) and PL lifetime of FA1- xCs xPbBr3 films and current efficiency (CE) of PeLEDs. Further increase in Cs molar proportion from 10 mol % decreased crystallinity and purity, increased trap density, and correspondingly decreased PLQE, PL lifetime, and CE. Incorporation of Cs also increased photostability of FA1- xCs xPbBr3 films, possibly due to suppressed formation of light-induced metastable states. FA1- xCs xPbBr3 PeLEDs show the maximum CE = 14.5 cd A-1 at FA:Cs = 90:10 with very narrow EL spectral width (21-24 nm); this is the highest CE among FA-Cs-based PeLEDs reported to date. This work provides an understanding of the influences of Cs incorporation on the chemical, structural, and luminescent properties of FAPbBr3 polycrystalline films and a breakthrough to increase the efficiency of FA1- xCs xPbBr3 PeLEDs.

17.
Adv Mater ; 29(31)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28608541

RESUMEN

This paper reports highly bright and efficient CsPbBr3 perovskite light-emitting diodes (PeLEDs) fabricated by simple one-step spin-coating of uniform CsPbBr3 polycrystalline layers on a self-organized buffer hole injection layer and stoichiometry-controlled CsPbBr3 precursor solutions with an optimized concentration. The PeLEDs have maximum current efficiency of 5.39 cd A-1 and maximum luminance of 13752 cd m-2 . This paper also investigates the origin of current hysteresis, which can be ascribed to migration of Br- anions. Temperature dependence of the electroluminescence (EL) spectrum is measured and the origins of decreased spectrum area, spectral blue-shift, and linewidth broadening are analyzed systematically with the activation energies, and are related with Br- anion migration, thermal dissociation of excitons, thermal expansion, and electron-phonon interaction. This work provides simple ways to improve the efficiency and brightness of all-inorganic polycrystalline PeLEDs and improves understanding of temperature-dependent ion migration and EL properties in inorganic PeLEDs.

18.
Nanoscale ; 8(40): 17598-17607, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27714106

RESUMEN

We demonstrate the charge transport characteristics of MoS2-based vertical heterojunction devices through the formation of interfacial strain. Atomically thin MoS2 bilayers were directly synthesized on a p-type Si substrate by using chemical vapor deposition to introduce an interfacial tensile strain in the vertical heterojunction diode structure, which was confirmed by Raman, X-ray and ultraviolet photoelectron spectroscopy techniques. The electrical and optoelectronic properties of the heterojunction devices with the as-grown MoS2 (A-MoS2) on p-Si were compared with those of transferred MoS2 (T-MoS2)/p-Si devices. To clearly understand the charge transport characteristics induced by the interfacial tensile strain, the Fowler-Nordheim (FN) analysis of the electrical properties of the diode devices was conducted with the corresponding energy band diagrams. All of the fabricated MoS2-based vertical diodes exhibited clearly rectifying behaviors, but the photoresponse properties of the A-MoS2-based and T-MoS2-based heterojunctions exhibited distinct differences. Interestingly, we found that the tunneling barrier heights of the A-MoS2-based heterojunction devices were relatively higher than those of the T-MoS2-based devices and were almost the same before and after illumination due to the interfacial tensile strain, whereas those of the T-MoS2-based devices were lowered after illumination. Our study will help further understand the charge transport properties of 2D material-based heterojunction devices in the presence of interfacial strain, ultimately enabling the design of electronic and optoelectronic devices with novel functionalities.

19.
ACS Appl Mater Interfaces ; 7(40): 22385-93, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26411354

RESUMEN

In this paper, the carrier transport mechanism at the metal/amorphous hafnium-indium-zinc oxide (a-HIZO) interface was investigated. The contact properties were found to be predominantly affected by the degree of interfacial reaction between the metals and a-HIZO; that is, a higher tendency to form metal oxide phases leads to excellent Ohmic contact via tunneling, which is associated with the generated donor-like oxygen vacancies. In this case, the Schottky-Mott theory is not applicable. Meanwhile, metals that do not form interfacial metal oxide, such as Pd, follow the Schottky-Mott theory, which results in rectifying Schottky behavior. The Schottky characteristics of the Pd contact to a-HIZO can be explained in terms of the barrier inhomogeneity model, which yields a mean barrier height of 1.40 eV and a standard deviation of 0.14 eV. The work function of a-HIZO could therefore be estimated as 3.7 eV, which is in good agreement with the ultraviolet photoelectron spectroscopy (3.68 eV). Our findings will be useful for establishing a strategy to form Ohmic or Schottky contacts to a-HIZO films, which will be essential for fabricating reliable high-performance electronic devices.

20.
J Nanosci Nanotechnol ; 14(11): 8176-81, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25958495

RESUMEN

The current-voltage characteristics and the carrier-transport mechanism of the Er-silicide (ErSi1.7) Schottky contacts to strained-silicon-on-insulator (sSOI) and silicon-on-insulator (SOI) were investigated. Barrier heights of 0.74 eV and 0.82 eV were obtained for the sSOI and SOI structures, respectively. The barrier height of the sSOI structure was observed to be lower than that of the SoI structure despite the formation of a Schottky contact using the same metal silicide. The sSOI structure exhibited better rectification and higher current level than the SOI structure, which could be associated with a reduction in the band gap of Si caused by strain. The generation-recombination mechanism was found to be dominant in the forward bias for both structures. Carrier generation along with the Poole-Frenkel mechanism dominated the reverse-biased current in the SOI structure. The saturation tendency of the reverse leakage current in the sSOI structure could be attributed to strain-induced defects at the interface in non-lattice-matched structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA