Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(1): 227-241, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37938411

RESUMEN

This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 µM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.


Asunto(s)
Cobre , Urato Oxidasa , Humanos , Ácido Úrico/análisis , Reproducibilidad de los Resultados , Técnicas Electroquímicas/métodos
2.
J Food Sci Technol ; 59(3): 1053-1062, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35153325

RESUMEN

Palm oil is one of the most produced and traded vegetable oils in the world recently. The quality of palm oil is very important to be examined and one of the quality indices is free fatty acid (FFA) content. Thus, in this study, an electrochemical technique for the determination of FFA as alternative to conventional method (titration method) has been explored. The electrochemical method was developed based on electrochemically reduced graphene oxide (rGO) deposited onto screen printed carbon electrode (SPCE) via drop-casting technique. The modified electrode was characterized by physico-chemical and electrochemical methods, respectively. The voltammetric behaviour of 2-methyl-1,4-naphthaquinone (VK3) in the presence of palmitic acid at the modified electrode was investigated in an acetonitrile/water (3:1) mixture containing 2.5 M lithium perchlorate (LiClO4). The electrochemical detection of palmitic acid was based on the voltammetric reduction of VK3 to form corresponding hydroquinone which is proportional to the concentration of palmitic acid. Under optimum condition, the developed method showed a good linear relationship in the concentration ranging from 0.192 mM to 0.833 mM with the detection limit of 0.079 mM. The developed sensor illustrates high sensitivity and rapid detection towards determination of FFA content in palm oil.

3.
Anal Bioanal Chem ; 413(15): 3861-3872, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34021369

RESUMEN

Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target. The originally selected zearalenone (ZEA) aptamer was 80-mer in length and shown to bind the target with a high affinity (Kd = 41 ± 5 nM). Herein, computational docking simulation was performed with 15 truncated variants to determine the predicted binding energy and responsible binding site of the aptamer-analyte complex. The results revealed that 5 truncated variants had binding energy lower than - 7.0 kcal/mol. Circular dichroism analysis was performed on the shortlisted aptamer and the conformational change of aptamers was observed with the presence of an analyte. Aptamer Z3IN (29-mer) was chosen as the most enhanced affinity for its target with a dissociation constant of 11.77 ± 1.44 nM. The aptamer was further applied in the electrochemical aptasensor of ZEA based on an indirect competitive format. The results demonstrated that the truncated aptamer leads to an enhancement of the sensitivity of the biosensor.


Asunto(s)
Aptámeros de Nucleótidos/análisis , Técnicas Electroquímicas/instrumentación , Zearalenona/análisis , Aptámeros de Nucleótidos/química , Secuencia de Bases , Técnicas Biosensibles/métodos , Dicroismo Circular , Espectroscopía Dieléctrica , Límite de Detección , Simulación del Acoplamiento Molecular
4.
Mikrochim Acta ; 188(1): 20, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33404779

RESUMEN

An early detection of Mycobacterium tuberculosis is very important to reduce the number of fatal cases and allow for fast recovery. However, the interpretation of the result from smear microscopy requires skilled personnel due to the propensity of the method to produce false-negative results. In this work, a portable, rapid, and simple sandwich-type immunosensor reader has been developed that is able to detect the presence of M. tuberculosis in sputum samples. By using sandwich-type immunosensor, an anti-CFP10-ESAT6 antibody was immobilized onto the graphene/polyaniline (GP/PANI)-modified gold screen-printed electrode. After incubation with the target CFP10-ESAT6 antigen, the iron/gold magnetic nanoparticles (Fe3O4/Au MNPs) conjugated with anti-CFP10-ESAT6 antibody were used to complete the sandwich format. Differential pulse voltammetry (DPV) technique was used to detect the CFP10-ESAT6 antigen at the potential range of 0.0-1.0 V. The detection time is less than 2 h. Under optimal condition, CFP10-ESAT6 antigen was detected in a linear range from 10 to 500 ng mL-1 with a limit of detection at 1.5 ng mL-1. The method developed from this process was then integrated into a portable reader. The performance of the sensor was investigated and compared with the standard methods (culture and smear microscopy). It provides a good correlation (100% sensitivity and 91.7% specificity) with both methods of detection for M. tuberculosis in sputum samples henceforth, demonstrating the potential of the device as a more practical screening tool.Graphical abstract.


Asunto(s)
Proteínas Bacterianas/análisis , Nanopartículas de Magnetita/química , Mycobacterium tuberculosis/química , Proteínas Recombinantes de Fusión/análisis , Esputo/química , Tuberculosis/diagnóstico por imagen , Técnicas Electroquímicas/métodos , Oro/química , Humanos , Inmunoensayo/métodos , Límite de Detección , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Anal Biochem ; 610: 113876, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32750357

RESUMEN

The identification of rice bacterial leaf blight disease requires a simple, rapid, highly sensitive, and quantitative approach that can be applied as an early detection monitoring tool in rice health. This paper highlights the development of a turn-off fluorescence-based immunoassay for the early detection of Xanthomonas oryzae pv. oryzae (Xoo), a gram-negative bacterium that causes rice bacterial leaf blight disease. Antibodies against Xoo bacterial cells were produced as specific bio-recognition molecules and the conjugation of these antibodies with graphene quantum dots and gold nanoparticles was performed and characterized, respectively. The combination of both these bio-probes as a fluorescent donor and metal quencher led to changes in the fluorescence signal. The immunoreaction between AntiXoo-GQDs, Xoo cells, and AntiXoo-AuNPs in the immuno-aggregation complex led to the energy transfer in the turn-off fluorescence-based quenching system. The change in fluorescence intensity was proportional to the logarithm of Xoo cells in the range of 100-105 CFU mL-1. The limit of detection was achieved at 22 CFU mL-1 and the specificity test against other plant disease pathogens showed high specificity towards Xoo. The detection of Xoo in real plant samples was also performed in this study and demonstrated satisfactory results.


Asunto(s)
Inmunoensayo/métodos , Oryza/microbiología , Xanthomonas/aislamiento & purificación , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Colorantes Fluorescentes/química , Oro/química , Grafito/química , Nanopartículas del Metal/química , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Puntos Cuánticos/química , Xanthomonas/inmunología
6.
Mikrochim Acta ; 187(5): 266, 2020 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-32279134

RESUMEN

An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Micotoxinas/análisis , Zearalenona/análisis , Secuencia de Bases , Técnicas Electroquímicas/instrumentación , Electrodos , Contaminación de Alimentos/análisis , Oro/química , Ácidos Nucleicos Inmovilizados/química , Límite de Detección , Micotoxinas/química , Zea mays/química , Zearalenona/química
7.
Molecules ; 25(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722334

RESUMEN

Death from tuberculosis has resulted in an increased need for early detection to prevent a tuberculosis (TB) epidemic, especially in closed and crowded populations. Herein, a sensitive electrochemical DNA biosensor based on functionalized iron oxide with mercaptopropionic acid (MPA-Fe3O4) nanoparticle and nanocellulose crystalline functionalized cetyl trimethyl ammonium bromide (NCC/CTAB) has been fabricated for the detection of Mycobacterium tuberculosis (MTB). In this study, a simple drop cast method was applied to deposit solution of MPA-Fe3O4/NCC/CTAB onto the surface of the screen-printed carbon electrode (SPCE). Then, a specific sequence of MTB DNA probe was immobilized onto a modified SPCE surface by using the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling mechanism. For better signal amplification and electrochemical response, ruthenium bipyridyl Ru(bpy)32+ was assigned as labels of hybridization followed by the characteristic test using differential pulse voltammetry (DPV). The results of this biosensor enable the detection of target DNA until a concentration as low as 7.96 × 10-13 M with a wide detection range from 1.0 × 10-6 to 1.0 × 10-12 M. In addition, the developed biosensor has shown a differentiation between positive and negative MTB samples in real sampel analysis.


Asunto(s)
Carbono/química , ADN Bacteriano/análisis , Compuestos Férricos/química , Mycobacterium tuberculosis/aislamiento & purificación , Ácido 3-Mercaptopropiónico/química , Técnicas Biosensibles , Cetrimonio/química , Técnicas Electroquímicas , Electrodos , Mycobacterium tuberculosis/genética
8.
Molecules ; 25(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526838

RESUMEN

Early diagnosis of bone metastases is crucial to prevent skeletal-related events, and for that, the non-invasive techniques to diagnose bone metastases that make use of image-guided radiopharmaceuticals are being employed as an alternative to traditional biopsies. Hence, in the present work, we tested the efficacy of a gallium-68 (68Ga)-based compound as a radiopharmaceutical agent towards the bone imaging in positron emitting tomography (PET). For that, we prepared, thoroughly characterized, and radiolabeled [68Ga]Ga-NODAGA-pamidronic acid radiopharmaceutical, a 68Ga precursor for PET bone cancer imaging applications. The preparation of NODAGA-pamidronic acid was performed via the N-Hydroxysuccinimide (NHS) ester strategy and was characterized using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MSn). The unreacted NODAGA chelator was separated using the ion-suppression reverse phase-high performance liquid chromatography (RP-HPLC) method, and the freeze-dried NODAGA-pamidronic acid was radiolabeled with 68Ga. The radiolabeling condition was found to be most optimum at a pH ranging from 4 to 4.5 and a temperature of above 60 °C. From previous work, we found that the pamidronic acid itself has a good bone binding affinity. Moreover, from the analysis of the results, the ionic structure of radiolabeled [68Ga]Ga-NODAGA-pamidronic acid has the ability to improve the blood clearance and may exert good renal excretion, enhance the bone-to-background ratio, and consequently the final image quality. This was reflected by both the in vitro bone binding assay and in vivo animal biodistribution presented in this research.


Asunto(s)
Acetatos/farmacocinética , Huesos/diagnóstico por imagen , Huesos/metabolismo , Radioisótopos de Galio/farmacocinética , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Pamidronato/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Acetatos/química , Animales , Cromatografía Líquida de Alta Presión , Radioisótopos de Galio/química , Compuestos Heterocíclicos con 1 Anillo/química , Masculino , Espectrometría de Masas , Pamidronato/química , Radiofármacos/química , Ratas , Ratas Sprague-Dawley , Distribución Tisular
9.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067720

RESUMEN

The use of nanotechnology could play a significant role in the agriculture sector, especially in the preparation of new-generation agronanochemicals. Currently, the economically important plant of Malaysia, the oil palm, faces the threat of a devastating disease which is particularly caused by a pathogenic fungus, Ganoderma boninense. For the development of an effective antifungal agent, a series of chitosan nanoparticles loaded with a fumigant, dazomet, were prepared using various concentrations of sodium tripolyphosphate (TPP)-2.5, 5, 10, and 20 mg/mL, abbreviated as CDEN2.5, CDEN5, CDEN10, and CDEN20, respectively. The effect of TPP as a crosslinking agent on the resulting particle size of the synthesized nanoparticles was investigated using a particle size analyzer and high-resolution transmission electron microscopy (HRTEM). Both methods confirmed that increasing the TPP concentration resulted in smaller particles. In addition, in vitro fumigant release at pH 5.5 showed that the release of the fumigant from the nanoparticles was of a sustained manner, with a prolonged release time up to 24 h. Furthermore, the relationship between the chitosan-dazomet nanoparticles and the in vitro antifungal activity against G. boninense was also explored, where the nanoparticles of the smallest size, CDEN20, gave the highest antifungal efficacy with the lowest half maximum effective concentration (EC50) value of 13.7 ± 1.76 ppb. This indicates that the smaller-sized agronanoparticles were more effective as an antifungal agent. The size can be altered, which plays a crucial role in combatting the Ganoderma disease. The agronanoparticles have controlled release properties and high antifungal efficacy on G. boninense, thus making them a promising candidate to be applied in the field for Ganoderma treatment.


Asunto(s)
Antifúngicos/química , Quitosano/análogos & derivados , Ganoderma/efectos de los fármacos , Nanopartículas/química , Tiadiazinas/química , Antifúngicos/farmacología
10.
Molecules ; 24(17)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470528

RESUMEN

This work presents a simple green synthesis of gold nanoparticles (AuNPs) by using an aqueous extract of Etlingera elatior (torch ginger). The metabolites present in E. elatior, including sugars, proteins, polyphenols, and flavonoids, were known to play important roles in reducing metal ions and supporting the subsequent stability of nanoparticles. The present work aimed to investigate the ability of the E. elatior extract to synthesise AuNPs via the reduction of gold (III) chloride hydrate and characterise the properties of the nanoparticles produced. The antioxidant properties of the E. elatior extract were evaluated by analysing the total phenolic and total flavonoid contents. To ascertain the formation of AuNPs, the synthesised particles were characterised using the ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) microscopy, and dynamic light scattering (DLS) measurement. The properties of the green synthesised AuNPs were shown to be comparable to the AuNPs produced using a conventional reducing agent, sodium citrate. The UV-Vis measured the surface plasmon resonance of the AuNPs, and a band centered at 529 nm was obtained. The FTIR results proved that the extract contained the O-H functional group that is responsible for capping the nanoparticles. The HRTEM images showed that the green synthesized AuNPs were of various shapes and the average of the nanoparticles' hydrodynamic diameter was 31.5 ± 0.5 nm. Meanwhile, the zeta potential of -32.0 ± 0.4 mV indicates the high stability and negative charge of the AuNPs. We further successfully demonstrated that using the green synthesised AuNPs as the nanocomposite to modify the working surface of screen-printed carbon electrode (SPCE/Cs/AuNPs) enhanced the rate of electron transfer and provided a sensitive platform for the detection of Cu(II) ions.


Asunto(s)
Técnicas Biosensibles/instrumentación , Cobre/aislamiento & purificación , Técnicas Electroquímicas/instrumentación , Oro/química , Nanopartículas del Metal/química , Zingiberaceae/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Cationes Bivalentes , Flavonoides/química , Tecnología Química Verde , Nanopartículas del Metal/ultraestructura , Oxidación-Reducción , Tamaño de la Partícula , Extractos Vegetales/química , Proteínas de Plantas/química , Polifenoles/química , Citrato de Sodio/química , Electricidad Estática , Azúcares/química
11.
Molecules ; 24(13)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288497

RESUMEN

Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells (Ganoderma fungus). A pathogenic fungus, Ganoderma boninense (G. boninense), is destructive to oil palm whereby it can cause significant loss to oil palm plantations located in the Southeast Asian countries, especially Malaysia and Indonesia. In regard to this matter, a series of chitosan nanoparticles loaded with the fungicide, hexaconazole, was prepared using various concentrations of crosslinking agent sodium tripolyphosphate (TPP). The resulting particle size revealed that the increase of the TPP concentration produced smaller particles. In addition, the in vitro fungicide released at pH 5.5 demonstrated that the fungicide from the nanoparticles was released in a sustainable manner with a prolonged release time up to 86 h. On another note, the in vitro antifungal studies established that smaller particle size leads to lower half maximum effective concentration (EC50) value, which indicates higher antifungal activity against G. boninense.


Asunto(s)
Arecaceae/microbiología , Quitosano/química , Portadores de Fármacos/química , Fungicidas Industriales/farmacología , Ganoderma/efectos de los fármacos , Nanopartículas/química , Enfermedades de las Plantas/microbiología , Triazoles/farmacología , Reactivos de Enlaces Cruzados/química , Liberación de Fármacos , Cinética , Tamaño de la Partícula , Polifosfatos/química
12.
Sensors (Basel) ; 18(6)2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29899214

RESUMEN

In the present study, a beneficial approach for the ultrasensitive and affordable naked eye detection and diagnosis of tuberculosis (TB) by utilizing plasmonic enzyme-linked immunosorbent assay (ELISA) via antibody-antigen interaction was studied. Here, the biocatalytic cycle of the intracellular enzymes links to the formation and successive growth of the gold nanoparticles (GNPs) for ultrasensitive detection. The formation of different colored solutions by the plasmonic nanoparticles in the presence of enzyme labels links directly to the existence or non-existence of the TB analytes in the sample solutions. For disease detection, the adapted protocol is based mainly on the conventional ELISA procedure that involves catalase-labeled antibodies, i.e., the enzymes consume hydrogen peroxide and further produce GNPs with the addition of gold (III) chloride. The amount of hydrogen peroxide remaining in the solution determines whether the GNPs solution is to be formed in the color blue or the color red, as it serves as a confirmation for the naked eye detection of TB analytes. However, the conventional ELISA method only shows tonal colors that need a high concentration of analyte to achieve high confidence levels for naked eye detection. Also, in this research, we proposed the incorporation of protein biomarker, Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10), as a means of TB detection using plasmonic ELISA. With the use of this technique, the CFP-10 detection limit can be lowered to 0.01 µg/mL by the naked eye. Further, our developed technique was successfully tested and confirmed with sputum samples from patients diagnosed with positive TB, thereby providing enough evidence for the utilization of our technique in the early diagnosis of TB disease.


Asunto(s)
Proteínas Bacterianas/análisis , Ensayo de Inmunoadsorción Enzimática , Tuberculosis/diagnóstico , Proteínas Bacterianas/inmunología , Oro/química , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Límite de Detección , Nanopartículas del Metal/química , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología
13.
Sensors (Basel) ; 18(11)2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30441776

RESUMEN

A rapid and sensitive sandwich electrochemical immunosensor was developed based on the fabrication of the graphene/polyaniline (GP/PANI) nanocomposite onto screen-printed gold electrode (SPGE) for detection of tuberculosis biomarker 10-kDa culture filtrate protein (CFP10). The prepared GP/PANI nanocomposite was characterized using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The chemical bonding and morphology of GP/PANI-modified SPGE were studied by Raman spectroscopy and FESEM coupled with energy dispersive X-ray spectroscopy, respectively. From both studies, it clearly showed that GP/PANI was successfully coated onto SPGE through drop cast technique. Cyclic voltammetry was used to study the electrochemical properties of the modified electrode. The effective surface area for GP/PANI-modified SPGE was enhanced about five times compared with bare SPGE. Differential pulse voltammetry was used to detect the CFP10 antigen. The GP/PANI-modified SPGE that was fortified with sandwich type immunosensor exhibited a wide linear range (20⁻100 ng/mL) with a low detection limit of 15 ng/mL. This proposed electrochemical immunosensor is sensitive, low sample volume, rapid and disposable, which is suitable for tuberculosis detection in real samples.


Asunto(s)
Técnicas Biosensibles , Fragmentos de Péptidos/aislamiento & purificación , Tuberculosis/diagnóstico , Compuestos de Anilina/química , Diagnóstico Precoz , Técnicas Electroquímicas/métodos , Grafito/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , Microscopía Electrónica de Rastreo/métodos , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/patogenicidad , Fragmentos de Péptidos/inmunología , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Tuberculosis/inmunología
14.
J Mater Sci Mater Med ; 28(9): 138, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28791524

RESUMEN

5-Fluororaucil (5-FU) as anti-cancer drug was reported to induce thymidine synthase (TS) overexpression and cancer cell resistance. To improve its therapeutic efficacy and selective targeting, here we developed a targeted delivery system mediated by the active ligand-folate receptor chemistry to deliver the 5-FU drug selectively into the tumor microenvironment. The preparation was achieved by exploring chitosan (CS)-biopolymer based system with folic acid (FA)-conjugation. The 5-FU@FACS-Mn:ZnS quantum dots (QDs) based on the histological assessment conducted in the 4T1 challenged mice showed an improved tumor remission in the liver, spleen and lungs. The 5-FU@FACS-Mn:ZnS composite induced anti-proliferative properties in these organs as compared to the free 5-FU drug. Unlike the 5-FU@FACS-Mn:ZnS treated groups which showed some specific morphological changes such as cell shrinkage without obvious presence of adipocytes, the excised section of the tumor in the untreated control group and the free 5-FU drug treated group showed necrotic and degenerated cells; these cells are multifocally distributed in the tumor mass with evidence of widely distributed adipocytes within the tumor mass. These findings suggest that the 5-FU@FACS-Mn:ZnS composite has a superior role during the induction of apoptosis in the 4T1 cells as compared to the free 5-FU drug treated groups. The results of the study therefore suggest that the impregnation of 5-FU anti-cancer drug within the FACS-Mn:ZnS system significantly improves its selective targeting efficacy, in addition to improving the anti-proliferative properties and attenuate possible tumor resistances to the 5-FU drug. The work discusses about the anti-metastatic effects of folic acid-bound 5-Fluororacil loaded Mn:ZnS quantum dots towards 4T1 cell line proliferation in mice based on the histological analysis.


Asunto(s)
Antineoplásicos/administración & dosificación , Fluorouracilo/administración & dosificación , Fluorouracilo/uso terapéutico , Compuestos de Manganeso/química , Neoplasias Experimentales/tratamiento farmacológico , Sulfuros/química , Compuestos de Zinc/química , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/uso terapéutico , Quitosano , Femenino , Ratones , Ratones Endogámicos BALB C , Puntos Cuánticos
15.
Sensors (Basel) ; 17(5)2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28509848

RESUMEN

In this research work, electrochemical biosensor was fabricated based on immobilization of tyrosinase onto graphene-decorated gold nanoparticle/chitosan (Gr-Au-Chit/Tyr) nanocomposite-modified screen-printed carbon electrode (SPCE) for the detection of phenolic compounds. The nanocomposite film was constructed via solution casting method. The electrocatalytic activity of the proposed biosensor for phenol detection was studied using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Experimental parameters such as pH buffer, enzyme concentration, ratio of Gr-Au-Chit, accumulation time and potential were optimized. The biosensor shows linearity towards phenol in the concentration range from 0.05 to 15 µM with sensitivity of 0.624 µA/µM and the limit of detection (LOD) of 0.016 µM (S/N = 3). The proposed sensor also depicts good reproducibility, selectivity and stability for at least one month. The biosensor was compared with high-performance liquid chromatography (HPLC) method for the detection of phenol spiked in real water samples and the result is in good agreement and comparable.

16.
Sensors (Basel) ; 17(7)2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28671561

RESUMEN

Carbon nanotubes (CNTs) reinforced with gold nanoparticles (AuNPs) and chitosan nanoparticles (CTSNPs) were anchored on a screen-printed electrode to fabricate a multi-walled structure for the detection of quinoline. The surface morphology of the nanocomposites and the modified electrode was examined by an ultra-high resolution field emission scanning electron microscope (FESEM), and Fourier-transform infrared (FT-IR) spectroscopy was used to confirm the presence of specific functional groups on the multi-walled carbon nanotubes MWCNTs. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to monitor the layer-by-layer assembly of ultra-thin films of nanocomposites on the surface of the electrode and other electrochemical characterizations. Under optimized conditions, the novel sensor displayed outstanding electrochemical reactivity towards the electro-oxidation of quinoline. The linear range was fixed between 0.0004 and 1.0 µM, with a limit of detection (LOD) of 3.75 nM. The fabricated electrode exhibited high stability with excellent sensitivity and selectivity, specifically attributable to the salient characteristics of AuNPs, CTSNPs, and MWCNTs and the synergistic inter-relationship between them. The newly developed electrode was tested in the field. The Ipa increased with an increase in the amount of quinoline solution added, and the peak potential deviated minimally, depicting the real capability of the newly fabricated electrode.


Asunto(s)
Nanotubos de Carbono , Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Oro , Nanopartículas del Metal , Quinolinas , Espectroscopía Infrarroja por Transformada de Fourier
17.
Sensors (Basel) ; 17(7)2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28671559

RESUMEN

A semiconducting water-soluble core-shell quantum dots (QDs) system capped with thiolated ligand was used in this study for the sensitive detection of glucose in aqueous samples. The QDs selected are of CdSe-coated ZnS and were prepared in house based on a hot injection technique. The formation of ZnS shell at the outer surface of CdSe core was made via a specific process namely, SILAR (successive ionic layer adsorption and reaction). The distribution, morphology, and optical characteristics of the prepared core-shell QDs were assessed by transmission electron microscopy (TEM) and spectrofluorescence, respectively. From the analysis, the results show that the mean particle size of prepared QDs is in the range of 10-12 nm and that the optimum emission condition was displayed at 620 nm. Further, the prepared CdSe/ZnS core shell QDs were modified by means of a room temperature ligand-exchange method that involves six organic ligands, L-cysteine, L-histidine, thio-glycolic acid (TGA or mercapto-acetic acid, MAA), mercapto-propionic acid (MPA), mercapto-succinic acid (MSA), and mercapto-undecanoic acid (MUA). This process was chosen in order to maintain a very dense water solubilizing environment around the QDs surface. From the analysis, the results show that the CdSe/ZnS capped with TGA (CdSe/ZnS-TGA) exhibited the strongest fluorescence emission as compared to others; hence, it was tested further for the glucose detection after their treatment with glucose oxidase (GOx) and horseradish peroxidase (HRP) enzymes. Here in this study, the glucose detection is based on the fluorescence quenching effect of the QDs, which is correlated to the oxidative reactions occurred between the conjugated enzymes and glucose. From the analysis of results, it can be inferred that the resultant GOx:HRP/CdSe/ZnS-TGA QDs system can be a suitable platform for the fluorescence-based determination of glucose in the real samples.


Asunto(s)
Puntos Cuánticos , Compuestos de Cadmio , Glucosa , Compuestos de Selenio , Sulfuros , Sulfato de Zinc
18.
Sensors (Basel) ; 16(1)2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26805829

RESUMEN

In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a cross linker (AuNPs/en-MWCNTs). The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), X-Ray diffraction (XRD) and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2-10 µM and 10-30 µM with equations of Ipa (µA) = 2.88C (µM) + 1.2017; r = 0.9939 and Ipa (µA) = 0.88C (µM) + 22.97; r = 0.9973, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC) standard method.


Asunto(s)
Amoxicilina/análisis , Residuos de Medicamentos/análisis , Técnicas Electroquímicas/instrumentación , Oro/química , Leche/química , Nanotubos de Carbono/química , Animales , Bovinos , Técnicas Electroquímicas/métodos , Nanotubos de Carbono/ultraestructura
19.
Sensors (Basel) ; 16(9)2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27571080

RESUMEN

In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA.


Asunto(s)
Dengue/diagnóstico , Polietilenglicoles/química , Silanos/química , Coloración y Etiquetado , Cetrimonio , Compuestos de Cetrimonio/química , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Electricidad Estática , Rayos Ultravioleta
20.
Int J Mol Sci ; 16(5): 10562-77, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26006226

RESUMEN

In recent years, molecularly-imprinted polymers (MIPs) have attracted the attention of several researchers due to their capability for molecular recognition, easiness of preparation, stability and cost-effective production. By taking advantage of these facts, Hg(II) imprinted and non-imprinted copolymers were prepared by polymerizing mercury nitrate stock solution (or without it) with methacrylic acid (MAA), 2-hydroxyl ethyl methacrylate (HEMA), methanol and ethylene glycol dimethacrylate (EGDMA) as the monomer, co-monomer solvent (porogen) and cross-linker, respectively. Thus, the formed Hg(II) imprinted polymer was characterized by using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer, Emmett and Teller (BET) and thermal gravimetric analysis (TGA). The separation and preconcentration characteristics of Hg(II) imprinted polymer were investigated by solid phase extraction (SPE) procedures, and an optimal pH of 7 was investigated as ideal. The specific surface area of the Hg(II) imprinted polymer was found to be 19.45 m2/g with a size range from 100 to 140 µm in diameter. The maximum adsorption capacity was observed to be 1.11 mg/g of Hg(II) imprinted beads with 87.54% removal of Hg(II) ions within the first 5 min. The results of the study therefore confirm that the Hg(II) imprinted polymer can be used multiple times without significantly losing its adsorption capacity.


Asunto(s)
Mercurio/aislamiento & purificación , Impresión Molecular , Petróleo/análisis , Polímeros/química , Extracción en Fase Sólida , Adsorción , Metacrilatos/química , Impresión Molecular/métodos , Extracción en Fase Sólida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA