Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(14): 8187-8195, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32179669

RESUMEN

A dramatic evolution of fruit size has accompanied the domestication and improvement of fruit-bearing crop species. In tomato (Solanum lycopersicum), naturally occurring cis-regulatory mutations in the genes of the CLAVATA-WUSCHEL signaling pathway have led to a significant increase in fruit size generating enlarged meristems that lead to flowers with extra organs and bigger fruits. In this work, by combining mapping-by-sequencing and CRISPR/Cas9 genome editing methods, we isolated EXCESSIVE NUMBER OF FLORAL ORGANS (ENO), an AP2/ERF transcription factor which regulates floral meristem activity. Thus, the ENO gene mutation gives rise to plants that yield larger multilocular fruits due to an increased size of the floral meristem. Genetic analyses indicate that eno exhibits synergistic effects with mutations at the LOCULE NUMBER (encoding SlWUS) and FASCIATED (encoding SlCLV3) loci, two central players in the evolution of fruit size in the domestication of cultivated tomatoes. Our findings reveal that an eno mutation causes a substantial expansion of SlWUS expression domains in a flower-specific manner. In vitro binding results show that ENO is able to interact with the GGC-box cis-regulatory element within the SlWUS promoter region, suggesting that ENO directly regulates SlWUS expression domains to maintain floral stem-cell homeostasis. Furthermore, the study of natural allelic variation of the ENO locus proved that a cis-regulatory mutation in the promoter of ENO had been targeted by positive selection during the domestication process, setting up the background for significant increases in fruit locule number and fruit size in modern tomatoes.


Asunto(s)
Frutas/genética , Proteínas de Homeodominio/genética , Meristema/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/fisiología , Factores de Transcripción/metabolismo , Proliferación Celular/genética , Producción de Cultivos , Domesticación , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Meristema/citología , Mutación , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo/genética , Células Madre/fisiología , Factores de Transcripción/genética
2.
New Phytol ; 234(3): 1059-1074, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170044

RESUMEN

CRABS CLAW (CRC) orthologues play a crucial role in floral meristem (FM) determinacy and gynoecium formation across angiosperms, the key developmental processes for ensuring successful plant reproduction and crop production. However, the mechanisms behind CRC mediated FM termination are far from fully understood. Here, we addressed the functional characterization of tomato (Solanum lycopersicum) paralogous CRC genes. Using mapping-by-sequencing, RNA interference and CRISPR/Cas9 techniques, expression analyses, protein-protein interaction assays and Arabidopsis complementation experiments, we examined their potential roles in FM determinacy and carpel formation. We revealed that the incomplete penetrance and variable expressivity of the indeterminate carpel-inside-carpel phenotype observed in fruit iterative growth (fig) mutant plants are due to the lack of function of the S. lycopersicum CRC homologue SlCRCa. Furthermore, a detailed functional analysis of tomato CRC paralogues, SlCRCa and SlCRCb, allowed us to propose that they operate as positive regulators of FM determinacy by acting in a compensatory and partially redundant manner to safeguard the proper formation of flowers and fruits. Our results uncover for the first time the physical interaction of putative CRC orthologues with members of the chromatin remodelling complex that epigenetically represses WUSCHEL expression through histone deacetylation to ensure the proper termination of floral stem cell activity.


Asunto(s)
Proteínas de Arabidopsis , Solanum lycopersicum , Proteínas de Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Flores , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36499112

RESUMEN

The tropical common bean (Phaseolus vulgaris L.) is an obligatory short-day plant that requires relaxation of the photoperiod to induce flowering. Similar to other crops, photoperiod-induced floral initiation depends on the differentiation and maintenance of meristems. In this study, the global changes in transcript expression profiles were analyzed in two meristematic tissues corresponding to the vegetative and inflorescence meristems of two genotypes with different sensitivities to photoperiods. A total of 3396 differentially expressed genes (DEGs) were identified, and 1271 and 1533 were found to be up-regulated and down-regulated, respectively, whereas 592 genes showed discordant expression patterns between both genotypes. Arabidopsis homologues of DEGs were identified, and most of them were not previously involved in Arabidopsis floral transition, suggesting an evolutionary divergence of the transcriptional regulatory networks of the flowering process of both species. However, some genes belonging to the photoperiod and flower development pathways with evolutionarily conserved transcriptional profiles have been found. In addition, the flower meristem identity genes APETALA1 and LEAFY, as well as CONSTANS-LIKE 5, were identified as markers to distinguish between the vegetative and reproductive stages. Our data also indicated that the down-regulation of the photoperiodic genes seems to be directly associated with promoting floral transition under inductive short-day lengths. These findings provide valuable insight into the molecular factors that underlie meristematic development and contribute to understanding the photoperiod adaptation in the common bean.


Asunto(s)
Arabidopsis , Phaseolus , Arabidopsis/genética , Phaseolus/genética , Phaseolus/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Transcriptoma , Meristema , Flores/metabolismo , Inflorescencia/genética , Inflorescencia/metabolismo , Proteínas de Plantas/genética
4.
Plant Cell Environ ; 43(7): 1722-1739, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32329086

RESUMEN

Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.


Asunto(s)
ARN Helicasas DEAD-box/fisiología , Proteínas de Plantas/fisiología , Solanum lycopersicum/crecimiento & desarrollo , Northern Blotting , Cloroplastos/metabolismo , ARN Helicasas DEAD-box/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Salino
5.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878190

RESUMEN

Tomato cell wall-associated kinase 1 (SlWAK1) has only been studied in biotic stress response and hence its function in abiotic stress remains unknown. In a screening under salinity of an insertional mutant collection of tomato (Solanum lycopersicum L.), a mutant exhibiting lower degree of leaf chlorosis than wild type (WT) together with reduced leaf Na+ accumulation was selected. Genetic analysis of the mutation revealed that a single T-DNA insertion in the SlWAK1 gene was responsible of the mutant phenotype. Slwak1 null mutant reduced its shoot growth compared with WT, despite its improved Na+ homeostasis. SlWAK1 disruption affected osmotic homeostasis, as leaf water content was lower in mutant than in WT under salt stress. In addition, Slwak1 altered the source-sink balance under salinity, by increasing sucrose content in roots. Finally, a significant fruit yield reduction was found in Slwak1 vs. WT under long-term salt stress, mainly due to lower fruit weight. Our results show that disruption of SlWAK1 induces a higher sucrose transport from source leaf to sink root, negatively affecting fruit, the main sink at adult stage.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Homeostasis , Ósmosis , Proteínas de Plantas/metabolismo , Estrés Salino , Tolerancia a la Sal , Solanum lycopersicum/fisiología , Pared Celular/química , Solanum lycopersicum/efectos de los fármacos , Factores de Transcripción/metabolismo
6.
Plant J ; 96(2): 300-315, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30003619

RESUMEN

Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species.


Asunto(s)
Complejo Mediador/metabolismo , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gametogénesis en la Planta/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Complejo Mediador/genética , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología
7.
BMC Plant Biol ; 19(1): 141, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987599

RESUMEN

BACKGROUND: Tomato mutants altered in leaf morphology are usually identified in the greenhouse, which demands considerable time and space and can only be performed in adequate periods. For a faster but equally reliable scrutiny method we addressed the screening in vitro of 971 T-DNA lines. Leaf development was evaluated in vitro in seedlings and shoot-derived axenic plants. New mutants were characterized in the greenhouse to establish the relationship between in vitro and in vivo leaf morphology, and to shed light on possible links between leaf development and agronomic traits, a promising field in which much remains to be discovered. RESULTS: Following the screening in vitro of tomato T-DNA lines, putative mutants altered in leaf morphology were evaluated in the greenhouse. The comparison of results in both conditions indicated a general phenotypic correspondence, showing that in vitro culture is a reliable system for finding mutants altered in leaf development. Apart from providing homogeneous conditions, the main advantage of screening in vitro lies in the enormous time and space saving. Studies on the association between phenotype and nptII gene expression showed co-segregation in two lines (P > 99%). The use of an enhancer trap also allowed identifying gain-of-function mutants through reporter expression analysis. These studies suggested that genes altered in three other mutants were T-DNA tagged. New mutants putatively altered in brassinosteroid synthesis or perception, mutations determining multiple pleiotropic effects, lines affected in organ curvature, and the first tomato mutant with helical growth were discovered. Results also revealed new possible links between leaf development and agronomic traits, such as axillary branching, flower abscission, fruit development and fruit cracking. Furthermore, we found that the gene tagged in mutant 2635-MM encodes a Sterol 3-beta-glucosyltransferase. Expression analysis suggested that abnormal leaf development might be due to the lack-off-function of this gene. CONCLUSION: In vitro culture is a quick, efficient and reliable tool for identifying tomato mutants altered in leaf morphology. The characterization of new mutants in vivo revealed new links between leaf development and some agronomic traits. Moreover, the possible implication of a gene encoding a Sterol 3-beta-glucosyltransferase in tomato leaf development is reported.


Asunto(s)
Glucosiltransferasas/genética , Solanum lycopersicum/genética , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Frutas/enzimología , Frutas/genética , Frutas/crecimiento & desarrollo , Solanum lycopersicum/enzimología , Solanum lycopersicum/crecimiento & desarrollo , Mutación , Fenotipo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética
8.
Plant Physiol ; 176(2): 1676-1693, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29229696

RESUMEN

Characterization of a new tomato (Solanum lycopersicum) T-DNA mutant allowed for the isolation of the CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) gene whose lack of function was responsible for the severe alterations observed in the shoot apex and reproductive organs under salinity conditions. Physiological studies proved that SlCBL10 gene is required to maintain a proper low Na+/Ca2+ ratio in growing tissues allowing tomato growth under salt stress. Expression analysis of the main responsible genes for Na+ compartmentalization (i.e. Na+/H+ EXCHANGERs, SALT OVERLY SENSITIVE, HIGH-AFFINITY K+ TRANSPORTER 1;2, H+-pyrophosphatase AVP1 [SlAVP1] and V-ATPase [SlVHA-A1]) supported a reduced capacity to accumulate Na+ in Slcbl10 mutant leaves, which resulted in a lower uploading of Na+ from xylem, allowing the toxic ion to reach apex and flowers. Likewise, the tomato CATION EXCHANGER 1 and TWO-PORE CHANNEL 1 (SlTPC1), key genes for Ca2+ fluxes to the vacuole, showed abnormal expression in Slcbl10 plants indicating an impaired Ca2+ release from vacuole. Additionally, complementation assay revealed that SlCBL10 is a true ortholog of the Arabidopsis (Arabidopsis thaliana) CBL10 gene, supporting that the essential function of CBL10 is conserved in Arabidopsis and tomato. Together, the findings obtained in this study provide new insights into the function of SlCBL10 in salt stress tolerance. Thus, it is proposed that SlCBL10 mediates salt tolerance by regulating Na+ and Ca2+ fluxes in the vacuole, cooperating with the vacuolar cation channel SlTPC1 and the two vacuolar H+-pumps, SlAVP1 and SlVHA-A1, which in turn are revealed as potential targets of SlCBL10.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Solanum lycopersicum/genética , Calcineurina/genética , Homeostasis , Solanum lycopersicum/fisiología , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidad , Estrés Salino , Tolerancia a la Sal , Intercambiadores de Sodio-Hidrógeno/genética , Vacuolas/metabolismo
9.
J Exp Bot ; 70(20): 5731-5744, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31328220

RESUMEN

Arlequin (Alq) is a gain-of-function mutant whose most relevant feature is that sepals are able to become fruit-like organs due to the ectopic expression of the ALQ-TAGL1 gene. The role of this gene in tomato fruit ripening was previously demonstrated. To discover new functional roles for ALQ-TAGL1, and most particularly its involvement in the fruit set process, a detailed characterization of Alq yield-related traits was performed. Under standard conditions, the Alq mutant showed a much higher fruit set rate than the wild type. A significant percentage of Alq fruits were seedless. The results showed that pollination-independent fruit set in Alq is due to early transition from flower to fruit. Analysis of endogenous hormones in Alq suggests that increased content of cytokinins and decreased level of abscisic acid may account for precocious fruit set. Comparative expression analysis showed relevant changes of several genes involved in cell division, gibberellin metabolism, and the auxin signalling pathway. Since pollination-independent fruit set may be a very useful strategy for maintaining fruit production under adverse conditions, fruit set and yield in Alq plants under moderate salinity were assessed. Interestingly, Alq mutant plants showed a high yield under saline conditions, similar to that of Alq and the wild type under unstressed conditions.


Asunto(s)
Flores/metabolismo , Flores/fisiología , Frutas/metabolismo , Frutas/fisiología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Ácido Abscísico/metabolismo , División Celular/genética , División Celular/fisiología , Citocininas/metabolismo , Flores/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Giberelinas/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Polinización/genética , Polinización/fisiología
10.
J Exp Bot ; 70(4): 1209-1219, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222352

RESUMEN

Common bean (Phaseolus vulgaris L.) is an important grain legume domesticated independently in Mexico and Andean South America approximately 8000 years ago. Wild forms are obligate short-day plants, and relaxation of photoperiod sensitivity was important for expansion to higher latitudes and subsequent global spread. To better understand the nature and origin of this key adaptation, we examined its genetic control in progeny of a wide cross between a wild accession and a photoperiod-insensitive cultivar. We found that photoperiod sensitivity is under oligogenic control, and confirm a major effect of the Ppd locus on chromosome 1. The red/far-red photoreceptor gene PHYTOCHROME A3 (PHYA3) was identified as a strong positional candidate for Ppd, and sequencing revealed distinct deleterious PHYA3 mutations in photoperiod-insensitive Andean and Mesoamerican accessions. These results reveal the independent origins of photoperiod insensitivity within the two major common bean gene pools and demonstrate the conserved importance of PHYA genes in photoperiod adaptation of short-day legume species.


Asunto(s)
Adaptación Biológica , Domesticación , Phaseolus/fisiología , Fotoperiodo , Genes de Plantas/genética , Phaseolus/genética , Fitocromo A/genética , Fitocromo A/metabolismo
11.
Mol Genet Genomics ; 293(2): 417-433, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29143866

RESUMEN

Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.


Asunto(s)
Transferasas Alquil y Aril/genética , Cynara/genética , Haplotipos , Lactonas/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/metabolismo , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cynara/enzimología , Cynara/metabolismo , Frecuencia de los Genes , Humanos , Lactonas/farmacología , Pruebas de Sensibilidad Microbiana , Filogenia , Extractos Vegetales/farmacología , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sesquiterpenos/farmacología , Triterpenos/metabolismo
12.
Plant Biotechnol J ; 15(11): 1439-1452, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28317264

RESUMEN

With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.


Asunto(s)
Elementos de Facilitación Genéticos , Genes de Plantas/genética , Genómica/métodos , Mutagénesis Insercional/métodos , Solanum lycopersicum/genética , Agrobacterium/genética , Secuencia de Bases , Mapeo Cromosómico , ADN Bacteriano/genética , ADN de Plantas/aislamiento & purificación , Frutas , Silenciador del Gen , Genes de Plantas/fisiología , Genes Reporteros , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas
13.
Theor Appl Genet ; 130(1): 213-222, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27742924

RESUMEN

KEY MESSAGE: QTL and codominant genetic markers for fruit cracking have been identified in a tomato genetic map derived from a RIL population, providing molecular tools for marker-assisted breeding of this trait. In tomato, as well as in other fleshy fruits, one of the main disorders that widely limit quality and production is fruit cracking or splitting of the epidermis that is observed on the fruit skin and flesh at any stage of fruit growth and maturation. To elucidate the genetic basis of fruit cracking, a quantitative trait loci (QTL) analysis was conducted in a recombinant inbred line (RIL) population derived from a cross between tomato (Solanum lycopersicum) and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit cracking during three consecutive growing seasons. Construction of a high-density linkage map based on codominant markers, covering more than 1000 cM of the whole genome, led to the identification of both main and epistatic QTL controlling fruit cracking on the basis of a single-environment as well as multiple-environment analysis. This information will enhance molecular breeding for novel cracking resistant varieties and simultaneously assist the identification of genes underlying these QTL, helping to reveal the genetic basis of fruit cracking in tomato.


Asunto(s)
Ambiente , Epistasis Genética , Frutas/fisiología , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Mapeo Cromosómico , Cruzamientos Genéticos , ADN de Plantas/genética , Ligamiento Genético , Genotipo , Solanum lycopersicum/fisiología , Fitomejoramiento , Solanum/genética , Solanum/fisiología
14.
Theor Appl Genet ; 130(5): 903-913, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28280866

RESUMEN

KEY MESSAGE: Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding. Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.


Asunto(s)
Barajamiento de ADN , Frutas/química , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Epistasis Genética , Ligamiento Genético , Minerales/análisis , Valor Nutritivo , Fitomejoramiento , Solanum/genética , Oligoelementos/análisis
15.
Theor Appl Genet ; 127(4): 897-912, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24441949

RESUMEN

KEY MESSAGE: The QTLs analyses here reported demonstrate the significant role of both individual additive and epistatic effects in the genetic control of seed quality traits in the Andean common bean. Common bean shows considerable variability in seed size and coat color, which are important agronomic traits determining farmer and consumer acceptability. Therefore, strategies must be devised to improve the genetic base of cultivated germplasm with new alleles that would contribute positively to breeding programs. For that purpose, a population of 185 recombinant inbred lines derived from an Andean intra-gene pool cross, involving an adapted common bean (PMB0225 parent) and an exotic nuña bean (PHA1037 parent), was evaluated under six different--short and long-day--environmental conditions for seed dimension, weight, color, and brightness traits, as well as the number of seed per pod. A multi-environment Quantitative Trait Loci (QTL) analysis was carried out and 59 QTLs were mapped on all linkage groups, 18 of which had only individual additive effects, while 27 showed only epistatic effects and 14 had both individual additive and epistatic effects. Multivariate models that included significant QTL explained from 8 to 68 % and 2 to 15 % of the additive and epistatic effects, respectively. Most of these QTLs were consistent over environment, though interactions between QTLs and environments were also detected. Despite this, QTLs with differential effect on long-day and short-day environments were not found. QTLs identified were positioned in cluster, suggesting that either pleiotropic QTLs control several traits or tightly linked QTLs for different traits map together in the same genomic regions. Overall, our results show that digenic epistatic interactions clearly play an important role in the genetic control of seed quality traits in the Andean common bean.


Asunto(s)
Epistasis Genética , Sitios Genéticos , Endogamia , Phaseolus/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Semillas/genética , Cruzamientos Genéticos , Patrón de Herencia/genética , Tamaño de los Órganos/genética , Fenotipo , Pigmentación/genética , Semillas/anatomía & histología
16.
Hortic Res ; 11(3): uhae019, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38464473

RESUMEN

Flower development is a crucial step towards the completion of the plant life cycle. Physiological processes and gene regulatory mechanisms underlying flower formation have been extensively characterized, and the implication of MADS-box transcription factors as primary regulators of flower morphology has been widely described, mainly due to the analysis of loss-of-function mutants in model species. Nevertheless, detailed characterization of allele variation in several MADS-box homologous genes from crop species remains undescribed. Here, we have characterized a tomato mutant with aberrant flower development. Mutant plants exhibit changes in petal cell identity, as well as homeotic transformations of stamens into carpelloid structures, which in most cases result in succulent organs. Molecular analysis proved that a loss-of-function mutation in the TOMATO MADS-BOX 6 (TM6) gene is responsible for this mutant phenotype. Furthermore, as a result of the loss of function of TM6, misregulation of the transcription and mRNA processing of other MADS-box genes involved in reproductive development has been detected. Our findings demonstrate that TM6 is a key player in the complex regulatory network of MADS-box genes controlling flower development and also provide a novel mutant that may be useful for generating male sterile lines in tomatoes.

17.
BMC Plant Biol ; 12: 136, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22873566

RESUMEN

BACKGROUND: Nuña bean is a type of ancient common bean (Phaseolus vulgaris L.) native to the Andean region of South America, whose seeds possess the unusual property of popping. The nutritional features of popped seeds make them a healthy low fat and high protein snack. However, flowering of nuña bean only takes place under short-day photoperiod conditions, which means a difficulty to extend production to areas where such conditions do not prevail. Therefore, breeding programs of adaptation traits will facilitate the diversification of the bean crops and the development of new varieties with enhanced healthy properties. Although the popping trait has been profusely studied in maize (popcorn), little is known about the biology and genetic basis of the popping ability in common bean. To obtain insights into the genetics of popping ability related traits of nuña bean, a comprehensive quantitative trait loci (QTL) analysis was performed to detect single-locus and epistatic QTLs responsible for the phenotypic variance observed in these traits. RESULTS: A mapping population of 185 recombinant inbred lines (RILs) derived from a cross between two Andean common bean genotypes was evaluated for three popping related traits, popping dimension index (PDI), expansion coefficient (EC), and percentage of unpopped seeds (PUS), in five different environmental conditions. The genetic map constructed included 193 loci across 12 linkage groups (LGs), covering a genetic distance of 822.1 cM, with an average of 4.3 cM per marker. Individual and multi-environment QTL analyses detected a total of nineteen single-locus QTLs, highlighting among them the co-localized QTLs for the three popping ability traits placed on LGs 3, 5, 6, and 7, which together explained 24.9, 14.5, and 25.3% of the phenotypic variance for PDI, EC, and PUS, respectively. Interestingly, epistatic interactions among QTLs have been detected, which could have a key role in the genetic control of popping. CONCLUSIONS: The QTLs here reported constitute useful tools for marker assisted selection breeding programs aimed at improving nuña bean cultivars, as well as for extending our knowledge of the genetic determinants and genotype x environment interaction involved in the popping ability traits of this bean crop.


Asunto(s)
Mapeo Cromosómico , Repeticiones de Microsatélite , Phaseolus/genética , Sitios de Carácter Cuantitativo , Semillas/fisiología , Alelos , Cruzamiento , Cromosomas de las Plantas/genética , Epistasis Genética , Flores/genética , Flores/fisiología , Interacción Gen-Ambiente , Genotipo , Phaseolus/fisiología , Fotoperiodo , Polimorfismo Genético , Carácter Cuantitativo Heredable , Semillas/genética , Especificidad de la Especie
18.
Hortic Res ; 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35039829

RESUMEN

Trichomes are specialised epidermal cells developed in the aerial surface of almost every terrestrial plant. These structures form physical barriers, which combined with their capability of synthesis of complex molecules, prevent plagues from spreading and confer trichomes a key role in the defence against herbivores. In this work, the tomato gene HAIRPLUS (HAP) that controls glandular trichome density in tomato plants was characterised. HAP belongs to a group of proteins involved in histone tail modifications although some also bind methylated DNA. HAP loss of function promotes epigenomic modifications in the tomato genome reflected in numerous differentially methylated cytosines and causes transcriptomic changes in hap mutant plants. Taken together, these findings demonstrate that HAP links epigenome remodelling with multicellular glandular trichome development and reveal that HAP is a valuable genomic tool for pest resistance in tomato breeding.

19.
Plants (Basel) ; 11(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36235319

RESUMEN

Tomato (Solanum lycopersicum L.) is a major horticultural crop and a model species among eudicots, especially for traits related to reproductive development. Although considerable progress has been made since the tomato genome sequence project was completed, most of the genes identified remain predictions with an unknown or hypothetical function. This lack of functional characterization hampers the use of the huge amount of genomic information available to improve the quality and productivity of this crop. Reverse genetics strategies such as artificial mutagenesis and next-generation sequencing approaches build the perfect tandem for increasing knowledge on functional annotation of tomato genes. This work reports the phenotypic characterization of a tomato mutant collection generated from an EMS chemical mutagenesis program aimed to identify interesting agronomic mutants and novel gene functions. Tomato mutants were grouped into fourteen phenotypic classes, including vegetative and reproductive development traits, and the inheritance pattern of the identified mutations was studied. In addition, causal mutation of a selected mutant line was isolated through a mapping-by-sequencing approach as a proof of concept of this strategy's successful implementation. Results support tomato mutagenesis as an essential tool for functional genomics in this fleshy-fruited model species and a highly valuable resource for future breeding programs of this crop species aimed at the development of more productive and resilient new varieties under challenging climatic and production scenarios.

20.
Theor Appl Genet ; 123(7): 1207-14, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21811820

RESUMEN

A population of recombinant inbred lines (RIL) derived from a cross between the Watermelon mosaic virus (WMV) resistant genotype TGR-1551 and the susceptible Spanish cultivar 'Bola de Oro' has been evaluated for WMV resistance in spring, fall and growth chamber conditions. The quantitative trait loci (QTL) analyses detected one major QTL (wmv) on linkage group (LG) XI close to the microsatellite marker CMN04_35. This QTL controls the resistance to WMV in the three environmental conditions evaluated. Other minor QTLs affecting the severity of viral symptoms were identified, but they were not detected in all the assayed environments. The screening of the marker CMN04_35 in an F(2) progeny, derived from the same cross, confirmed the effect of this QTL on the expression of WMV resistance also in early generations, which evidences the usefulness of this marker for a marker assisted selection program.


Asunto(s)
Cucurbitaceae/genética , Cucurbitaceae/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos/genética , Genotipo , Repeticiones de Microsatélite , Modelos Genéticos , Virus del Mosaico/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA