Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(16): 11732-11744, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37066667

RESUMEN

Precise, efficient, and effective control of chemical reaction conditions is a viable measure for the environment-conscious time and energy resource management in modern laboratories and in industry. Parameter changes such as surface enlargement, pH, local reactant accumulation by solvent evaporation and polarization effects, etc., have been shown to greatly affect the reaction rate of a chemical reaction. In electrospray (ES) ionization - a soft ionization method often used for mass spectrometry - all these parameters change constantly and with high dynamics during the nebulization process that generates droplets as the ultimate confined µ-reaction vessels. Therefore, high acceleration factors are reported in literature for a manifold of such µ-droplet reactions. Here, the tri-molecular Mannich reaction was identified as a suitable candidate for studying thermal, electronic, and fluidic manipulation of the ES process to achieve high conversion rates with short reaction times and compare them to the batch reaction. Some of these manipulations were conducted separately to better quantify their individual contributions. Here, the keto-enol-tautomerism of the used ß-diketones, the high proton concentrations, and the longer reaction times in the µ-droplets are presumed to have the greatest impact on these enhancement factors. Experiments were performed to find ES conditions with small initial droplets and long droplet flight times where the highest reaction conversion rates are obtained. A sharp increase in the product peak was found at large distances between the mass spectrometry (MS) inlet and ES source at high voltages. Moreover, different trends were found for the two ketones studied, acetylacetone (AcAc) and 1,3-cyclohexanedione (Cyclo), by changing the temperature of the heated ES source. Finally, high conversion rates were obtained for the combination of formaldehyde (Fal) and piperidine (Pip) with AcAc and Cyclo, respectively, with over 90%. With respect to the batch reaction, this is mainly due to an increase in reaction kinetics as well as a shift in thermodynamics for the µ-droplet reaction environment.

2.
Anal Bioanal Chem ; 412(22): 5247-5260, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32488389

RESUMEN

A new ion mobility (IM) spectrometer, enabling mobility measurements in the pressure range between 5 and 500 mbar and in the reduced field strength range E/N of 5-90 Td, was developed and characterized. Reduced mobility (K0) values were studied under low E/N (constant value) as well as high E/N (deviation from low field K0) for a series of molecular ions in nitrogen. Infrared matrix-assisted laser desorption ionization (IR-MALDI) was used in two configurations: a source working at atmospheric pressure (AP) and, for the first time, an IR-MALDI source working with a liquid (aqueous) matrix at sub-ambient/reduced pressure (RP). The influence of RP on IR-MALDI was examined and new insights into the dispersion process were gained. This enabled the optimization of the IM spectrometer for best analytical performance. While ion desolvation is less efficient at RP, the transport of ions is more efficient, leading to intensity enhancement and an increased number of oligomer ions. When deciding between AP and RP IR-MALDI, a trade-off between intensity and resolving power has to be considered. Here, the low field mobility of peptide ions was first measured and compared with reference values from ESI-IM spectrometry (at AP) as well as collision cross sections obtained from molecular dynamics simulations. The second application was the determination of the reduced mobility of various substituted ammonium ions as a function of E/N in nitrogen. The mobility is constant up to a threshold at high E/N. Beyond this threshold, mobility increases were observed. This behavior can be explained by the loss of hydrated water molecules.

3.
Anal Bioanal Chem ; 408(23): 6259-68, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27370689

RESUMEN

The novel combination of infrared matrix-assisted laser dispersion and ionization (IR-MALDI) with ion mobility (IM) spectrometry makes it possible to investigate biomolecules in their natural environment, liquid water. As an alternative to an ESI source, the IR-MALDI source was implemented in an in-house-developed ion mobility (IM) spectrometer. The release of ions directly from an aqueous solution is based on a phase explosion, induced by the absorption of an IR laser pulse (λ = 2.94 µm, 6 ns pulse width), which disperses the liquid as nano- and micro-droplets. The prerequisites for the application of IR-MALDI-IM spectrometry as an analytical method are narrow analyte ion signal peaks for a high spectrometer resolution. This can only be achieved by improving the desolvation of ions. One way to full desolvation is to give the cluster ions sufficient time to desolvate. Two methods for achieving this are studied: the implementation of an additional drift tube, as in ESI-IM-spectrometry, and the delayed extraction of the ions. As a result of this optimization procedure, limits of detection between 5 nM and 2.5 µM as well as linear dynamic ranges of 2-3 orders of magnitude were obtained for a number of substances. The ability of this method to analyze simple mixtures is illustrated by the separation of two different surfactant mixtures.


Asunto(s)
Espectrometría de Movilidad Iónica/instrumentación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Diseño de Equipo , Rayos Infrarrojos , Espectrometría de Movilidad Iónica/métodos , Iones/química , Rayos Láser , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
4.
J Sep Sci ; 39(24): 4756-4764, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27805770

RESUMEN

The combination of high-performance liquid chromatography and electrospray ionization ion mobility spectrometry facilitates the two-dimensional separation of complex mixtures in the retention and drift time plane. The ion mobility spectrometer presented here was optimized for flow rates customarily used in high-performance liquid chromatography between 100 and 1500 µL/min. The characterization of the system with respect to such parameters as the peak capacity of each time dimension and of the 2D spectrum was carried out based on a separation of a pesticide mixture containing 24 substances. While the total ion current chromatogram is coarsely resolved, exhibiting coelutions for a number of compounds, all substances can be separately detected in the 2D plane due to the orthogonality of the separations in retention and drift dimensions. Another major advantage of the ion mobility detector is the identification of substances based on their characteristic mobilities. Electrospray ionization allows the detection of substances lacking a chromophore. As an example, the separation of a mixture of 18 amino acids is presented. A software built upon the free mass spectrometry package OpenMS was developed for processing the extensive 2D data. The different processing steps are implemented as separate modules which can be arranged in a graphic workflow facilitating automated processing of data.

5.
Anal Methods ; 16(6): 864-872, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38240373

RESUMEN

Careful quality control of complex matrices such as fuels and food is necessary due to the prevalence of counterfeit and pirated goods in global trade. The addition of taggants (indicator substances) to products or their packaging helps to ensure traceability. In order to prevent the mixing of different liquid products, such as different taxed fuels, invisible labelling (marker) can be used to detect illegal activities. This study investigates the qualitative and quantitative analysis of markers in complex fuel matrices using Resonance-Enhanced Multiphoton Ionisation (REMPI) Ion Mobility Spectrometry (IMS). The potential of REMPI as a selective ionisation technique for the detection of markers is highlighted, particularly with respect to minimizing matrix background and the possibility of detection without chromatographic pre-separation. Finding a suitable marker-wavelength combination that provides a suitable marker-to-matrix ratio allows selective ionization of markers while minimising matrix background. Matrix analysis shows that higher excitation wavelengths result in reduced matrix signals, with the low intensities observed at 355 nm for diesel and petrol matrices. Several candidate markers are evaluated based on the criteria of intense signal at 355 nm and non-leachability for the low tax labelling. The analytical performance of selected markers is evaluated, with a focus on the charge transfer reaction (CTR) between markers and matrix components. Our findings demonstrate the potential of REMPI-IMS for marker analysis in fuels without the need for chromatographic pre-separation, providing a promising approach for detecting illegal or fraudulent activities in the supply chain.

6.
ACS Omega ; 6(37): 23742-23749, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34568654

RESUMEN

The increasing development of antibiotic resistance in bacteria has been a major problem for years, both in human and veterinary medicine. Prophylactic measures, such as the use of vaccines, are of great importance in reducing the use of antibiotics in livestock. These vaccines are mainly produced based on formaldehyde inactivation. However, the latter damages the recognition elements of the bacterial proteins and thus could reduce the immune response in the animal. An alternative inactivation method developed in this work is based on gentle photodynamic inactivation using carbon nanodots (CNDs) at excitation wavelengths λex > 290 nm. The photodynamic inactivation was characterized on the nonvirulent laboratory strain Escherichia coli K12 using synthesized CNDs. For a gentle inactivation, the CNDs must be absorbed into the cytoplasm of the E. coli cell. Thus, the inactivation through photoinduced formation of reactive oxygen species only takes place inside the bacterium, which means that the outer membrane is neither damaged nor altered. The loading of the CNDs into E. coli was examined using fluorescence microscopy. Complete loading of the bacterial cells could be achieved in less than 10 min. These studies revealed a reversible uptake process allowing the recovery and reuse of the CNDs after irradiation and before the administration of the vaccine. The success of photodynamic inactivation was verified by viability assays on agar. In a homemade flow photoreactor, the fastest successful irradiation of the bacteria could be carried out in 34 s. Therefore, the photodynamic inactivation based on CNDs is very effective. The membrane integrity of the bacteria after irradiation was verified by slide agglutination and atomic force microscopy. The method developed for the laboratory strain E. coli K12 could then be successfully applied to the important avian pathogens Bordetella avium and Ornithobacterium rhinotracheale to aid the development of novel vaccines.

7.
Chempluschem ; 82(10): 1266-1273, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31957990

RESUMEN

The capability of electrospray ionization (ESI)-ion mobility (IM) spectrometry for reaction monitoring is assessed both as a stand-alone real-time technique and in combination with HPLC. A three-step chemical reaction, consisting of a Williamson ether synthesis followed by a hydrogenation and an N-alkylation step, is chosen for demonstration. Intermediates and products are determined with a drift time to mass-per-charge correlation. Addition of an HPLC column to the setup increases the separation power and allows the determination of further species. Monitoring of the intensities of the various species over the reaction time allows the detection of the end of reaction, determination of the rate-limiting step, observation of the system response in discontinuous processes, and optimization of the mass ratios of the starting materials. However, charge competition in ESI influences the quantitative detection of substances in the reaction mixture. Therefore, two different methods are investigated, which allow the quantification and investigation of reaction kinetics. The first method is based on the pre-separation of the compounds on an HPLC column and their subsequent individual detection in the ESI-IM spectrometer. The second method involves an extended calibration procedure, which considers charge competition effects and facilitates nearly real-time quantification.

8.
Eur J Mass Spectrom (Chichester) ; 21(3): 391-402, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26307720

RESUMEN

The application of electrospray ionization (ESI) ion mobility (IM) spectrometry on the detection end of a high-performance liquid chromatograph has been a subject of study for some time. So far, this method has been limited to low flow rates or has required splitting of the liquid flow. This work presents a novel concept of an ESI source facilitating the stable operation of the spectrometer at flow rates between 10 µL mn(-1) and 1500 µL min(-1) without flow splitting, advancing the T-cylinder design developed by Kurnin and co-workers. Flow rates eight times faster than previously reported were achieved because of a more efficient dispersion of the liquid at increased electrospray voltages combined with nebulization by a sheath gas. Imaging revealed the spray operation to be in a rotationally symmetric multijet mode. The novel ESI-IM spectrometer tolerates high water contents (≤90%) and electrolyte concentrations up to 10mM, meeting another condition required of high-performance liquid chromatography (HPLC) detectors. Limits of detection of 50 nM for promazine in the positive mode and 1 µM for 1,3-dinitrobenzene in the negative mode were established. Three mixtures of reduced complexity (five surfactants, four neuroleptics, and two isomers) were separated in the millisecond regime in stand-alone operation of the spectrometer. Separations of two more complex mixtures (five neuroleptics and 13 pesticides) demonstrate the application of the spectrometer as an HPLC detector. The examples illustrate the advantages of the spectrometer over the established diode array detector, in terms of additional IM separation of substances not fully separated in the retention time domain as well as identification of substances based on their characteristic Ims.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA