RESUMEN
This study proposes a microfluidic device capable of separating monocytes from a type of cancer cell that is called T-cell acute lymphoblastic leukemia (RPMI-8402) in a continuous flow using negative and positive dielectrophoretic forces. The use of both the hydrodynamic and dielectrophoretic forces allows the separation of RPMI-8402 from monocytes based on differences in their intrinsic electrical properties and sizes. The specific crossover frequencies of monocytes and RPMI-8402 cells have been obtained experimentally. The optimum ranges of electrode pitch-to-channel height ratio at the cross sections with different electrode widths have been generally calculated by numerical simulations of the gradients of the electric field intensities and calculation their effective values (root-mean-square). In the device, the cell sorting has been conducted empirically, and then, the separation performance has been evaluated by analyzing the images before and after dielectrophoretic forces applied to the cells. In this work, the design of a chip with 77 µm gold-titanium electrode pitch was investigated to achieve high purity of monocytes of 95.2%. The proposed device can be used with relatively low applied voltages, as low as 16.5 V (peak to peak). Thus, the design can be used in biomedical diagnosis and chemical analysis applications as a lab-on-chip platform. Also, it can be used for the separation of biological cells such as bacteria, RNA, DNA, and blood cells.
Asunto(s)
Separación Celular , Electroforesis , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Monocitos/metabolismo , Neoplasias/metabolismo , Electrodos , HumanosRESUMEN
Microfluidics provides unique opportunities for the high throughput selection of motile sperm with improved DNA integrity for assisted reproductive technologies (ARTs). Here, through a parametric study on dimensions and geometrical angles, a butterfly-shaped chip (BSC) is presented to isolate sperm with high progressive motility and intact DNA at a separation rate of 1125 sperm per minute. Using finite element simulations, the flow field and shear rates in the device were optimized to leverage the inherent motility characteristics of sperm for maximum selection throughput. The device incorporates a triple selection mechanism in series, initially activating sperm rheotaxis by rotation against the semen flow, penetrating the counter buffer flow and swimming against the direction of the buffer flow, leaving dead cells and debris behind, and subsequently leveraging boundary-following behavior to direct progressively motile sperm to swim along the walls and reach the device outlet. The device selects over 4.1 million sperm per mL within 20 minutes, with 29.2%, 68.2%, and 57.3% improvement in total motility, DNA integrity, and velocity parameter (VCL), as compared with the conventional swim-up method, respectively. Overall, the performance of the device to separate sperm with approximately 95.9% total motility, 97.8% viability, and 96.6% DNA integrity at high concentrations demonstrates its potential for enhancing the efficiency of conventional treatment methods.
Asunto(s)
ADN , Motilidad Espermática , Espermatozoides , Masculino , Espermatozoides/citología , Espermatozoides/metabolismo , ADN/química , ADN/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Separación Celular/instrumentaciónRESUMEN
Isolating high-quality motile sperm cells is considered to be the main prerequisite for a successful artificial pregnancy. Microfluidics has emerged as a promising platform capable of mimicking in-vivo environments to separate motile sperm cells and bypassing the need for the current invasive clinical sperm separation methods. In this study, the proposed microfluidic device exploits the parallelization concept through symmetry to increase both the processed sample volume and the injected flow rate compared with the previous conventional devices, which used rheotaxis as their primary method of sperm separation. Using the finite element method (FEM) and flow simulations, the trajectories of sperm cells exhibiting rheotaxis behavior were predicted inside the proposed device. Different flow rates, including 0, 0.5, 1.5, 3, 4.5 and 6 µl/min, were experimentally injected into the device, and the effect of flow rate on the size of the hypothetical rheotaxis zone and the number of isolated sperm cells was investigated. Furthermore, it was illustrated that 100% of the isolated motile sperm cells are motile, and by manipulating the injected flow rate into the device, different classes of sperm cells in terms of motility parameters can be separated and utilized for further uses.
Asunto(s)
Semen , Motilidad Espermática , Masculino , Humanos , Separación Celular/métodos , Espermatozoides , Dispositivos Laboratorio en un ChipRESUMEN
Rheotaxis, as one of the main natural guidance mechanisms in vivo, has been used in microfluidics to separate motile sperm. However, the lack of DNA integrity assessment and the inability to separate the cells in a specific reservoir have been the main limitations for the practical application of most of the devices using rheotaxis for sperm separation. Here, we present a microfluidic chip that can separate highly motile sperm using their inherent rheotaxis and boundary-following behavior in a network of boomerang-shaped microchannels. The device design is informed by our FEM simulation results to predict sperm trajectories. Experimental results demonstrate the device's performance to separate over 16 000 motile sperm in under 20 min, sufficient for droplet-based IVF. Separated cells are classified into two motility groups, highly motile (swimming speed > 120 µm s-1) and motile (swimming speed < 120 µm s-1). The device selects sperm with over 45%, 20%, and 80% improvement in motility, the number of highly motile sperm, and DNA integrity, respectively, suggesting promising potential for applications in assisted reproduction.
Asunto(s)
Microfluídica , Motilidad Espermática , Masculino , Humanos , Semen , Espermatozoides , ADNRESUMEN
Sperm separation is an essential part of in vitro fertilization (IVF) process. In conventional procedures, the semen sample is purified from immotile and round cells using centrifugation, which may damage sperm DNA. This study aimed to design a novel microchip to separate the progressively motile spermatozoa using a passive method instead of centrifugation. This microchip is a novel, non-invasive, and two-stage device for auto-selecting the sperm used for IVF. The first stage was designed based on lateral differentiation and rapid divergence to separate the pathways of sperm and round cells. The second stage separates high-quality sperm based on their inherent motion. Before experimenting with fresh human semen samples, preliminary tests were performed using standard particles. The results showed that at the optimized flow rate for separation (1.7 ml/h), the concentration of progressively motile spermatozoa at outlet was significantly increased compared with the initial sample.
Asunto(s)
Semen , Motilidad Espermática , Humanos , Masculino , Microfluídica , EspermatozoidesRESUMEN
Isolation of microparticles and biological cells on microfluidic chips has received considerable attention due to their applications in numerous areas such as medical and engineering fields. Microparticles separation is of great importance in bioassays due to the need for smaller sample and device size and lower manufacturing costs. In this study, we first explain the concepts of separation and microfluidic science along with their applications in the medical sciences, and then, a conceptual design of a novel inertial microfluidic system is proposed and analyzed. The PDMS spiral microfluidic device was fabricated, and its effects on the separation of particles with sizes similar to biological particles were experimentally analyzed. This separation technique can be used to separate cancer cells from the normal ones in the blood samples. These components required for testing were selected, assembled, and finally, a very affordable microfluidic kit was provided. Different experiments were designed, and the results were analyzed using appropriate software and methods. Separator system tests with polydisperse hollow glass particles (diameter 2-20 µm), and monodisperse Polystyrene particles (diameter 5 & 15 µm), and the results exhibit an acceptable chip performance with 86% of efficiency for both monodisperse particles and polydisperse particles. The microchannel collects particles with an average diameter of 15.8, 9.4, and 5.9 µm at the proposed reservoirs. This chip can be integrated into a more extensive point-of-care diagnostic system to test blood samples.
Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Separación CelularRESUMEN
OBJECTIVE: We present a four-branch model of the dielectrophoresis (DEP) method that takes into consideration the inherent properties of particles, including size, electrical conductivity, and permittivity coefficient. By using this model, bioparticles can be continuously separated by the application of only a one-stage separation process. MATERIALS AND METHODS: In this numerical study, we based the separation process on the differences in the particle sizes. We used the various negative DEP forces on the particles caused by the electrodes to separate them with a high efficiency. The particle separator could separate blood cells because of their different sizes. RESULTS: Blood cells greater than 12 µm were guided to a special branch, which improved separation efficiency because it prevented the deposition of particles in other branches. The designed device had the capability to separate blood cells with diameters of 2.0 µm, 6.2 µm, 10.0 µm, and greater than 12.0 µm. The applied voltage to the electrodes was 50 V with a frequency of 100 kHz. CONCLUSION: The proposed device is a simple, efficient DEP-based continuous cell separator. This capability makes it ideal for use in various biomedical applications, including cell therapy and cell separation, and results in a throughput increment of microfluidics devices.