Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO Rep ; 23(10): e54520, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35980303

RESUMEN

CDK9 is a kinase critical for the productive transcription of protein-coding genes by RNA polymerase II (pol II). As part of P-TEFb, CDK9 phosphorylates the carboxyl-terminal domain (CTD) of pol II and elongation factors, which allows pol II to elongate past the early elongation checkpoint (EEC) encountered soon after initiation. We show that, in addition to halting pol II at the EEC, loss of CDK9 activity causes premature termination of transcription across the last exon, loss of polyadenylation factors from chromatin, and loss of polyadenylation of nascent transcripts. Inhibition of the phosphatase PP2A abrogates the premature termination and loss of polyadenylation caused by CDK9 inhibition, indicating that this kinase/phosphatase pair regulates transcription elongation and RNA processing at the end of protein-coding genes. We also confirm the splicing factor SF3B1 as a target of CDK9 and show that SF3B1 in complex with polyadenylation factors is lost from chromatin after CDK9 inhibition. These results emphasize the important roles that CDK9 plays in coupling transcription elongation and termination to RNA maturation downstream of the EEC.


Asunto(s)
Factor B de Elongación Transcripcional Positiva , ARN Polimerasa II , Cromatina/genética , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN , ARN Polimerasa II/metabolismo , Factores de Empalme de ARN/genética , Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/genética
2.
Nucleic Acids Res ; 48(14): 7712-7727, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32805052

RESUMEN

Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD.


Asunto(s)
Quinasas Ciclina-Dependientes/fisiología , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Cromatina/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Células HEK293 , Humanos , Mutación , Fosforilación , ARN/biosíntesis , ARN Polimerasa II/química , Análisis de Secuencia de ARN , Serina/metabolismo , Factores de Elongación Transcripcional/metabolismo
3.
Mol Cell ; 45(1): 111-22, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22137580

RESUMEN

The carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II) comprises multiple heptapeptide repeats of the consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Reversible phosphorylation of Ser2, Ser5, and Ser7 during the transcription cycle mediates the sequential recruitment of transcription/RNA processing factors. Phosphorylation of Ser7 is required for recruitment of the gene type-specific Integrator complex to the Pol II-transcribed small nuclear (sn)RNA genes. Here, we show that RNA Pol II-associated protein 2 (RPAP2) specifically recognizes the phospho-Ser7 mark on the Pol II CTD and also interacts with Integrator subunits. siRNA-mediated knockdown of RPAP2 and mutation of Ser7 to alanine cause similar defects in snRNA gene expression. In addition, we show that RPAP2 is a CTD Ser5 phosphatase. Taken together, our results indicate that during transcription of snRNA genes, Ser7 phosphorylation facilitates recruitment of RPAP2, which in turn both recruits Integrator and dephosphorylates Ser5.


Asunto(s)
Proteínas Portadoras/metabolismo , ARN Polimerasa II/química , ARN Nuclear Pequeño/genética , Serina/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/genética , Humanos , Datos de Secuencia Molecular , Fosforilación , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo , ARN Polimerasa II/fisiología , Transcripción Genética
4.
Bioessays ; 38 Suppl 1: S75-85, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27417125

RESUMEN

Positive transcription elongation factor b (P-TEFb), which comprises cyclin-dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P-TEFb is required for productive elongation of transcription of protein-coding genes by RNA polymerase II (pol II). In addition, P-TEFb-mediated phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P-TEFb could be effective anti-viral agents.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo , Humanos , Fosforilación , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Virosis/virología , Virus/genética , Virus/metabolismo
5.
Nucleic Acids Res ; 42(1): 264-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24097444

RESUMEN

RNA polymerase II transcribes both protein coding and non-coding RNA genes and, in yeast, different mechanisms terminate transcription of the two gene types. Transcription termination of mRNA genes is intricately coupled to cleavage and polyadenylation, whereas transcription of small nucleolar (sno)/small nuclear (sn)RNA genes is terminated by the RNA-binding proteins Nrd1, Nab3 and Sen1. The existence of an Nrd1-like pathway in humans has not yet been demonstrated. Using the U1 and U2 genes as models, we show that human snRNA genes are more similar to mRNA genes than yeast snRNA genes with respect to termination. The Integrator complex substitutes for the mRNA cleavage and polyadenylation specificity factor complex to promote cleavage and couple snRNA 3'-end processing with termination. Moreover, members of the associated with Pta1 (APT) and cleavage factor I/II complexes function as transcription terminators for human snRNA genes with little, if any, role in snRNA 3'-end processing. The gene-specific factor, proximal sequence element-binding transcription factor (PTF), helps clear the U1 and U2 genes of nucleosomes, which provides an easy passage for pol II, and the negative elongation factor facilitates termination at the end of the genes where nucleosome levels increase. Thus, human snRNA genes may use chromatin structure as an additional mechanism to promote efficient transcription termination in vivo.


Asunto(s)
ARN Nuclear Pequeño/genética , Terminación de la Transcripción Genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Cromatina/química , Células HeLa , Humanos , Procesamiento de Término de ARN 3' , ARN Nuclear Pequeño/biosíntesis , ARN Nuclear Pequeño/metabolismo , Factores de Transcripción/fisiología
6.
Cell Death Dis ; 14(2): 84, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746936

RESUMEN

Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Represoras/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Linfocitos T CD8-positivos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/genética , Enfermedades Autoinmunes/genética , Línea Celular Tumoral
7.
Eukaryot Cell ; 10(10): 1331-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21821717

RESUMEN

Two proteins that differ at the N terminus (l-KlCpo and s-KlCpo) are derived from KlHEM13, a single-copy-number gene in the haploid genome of Kluyveromyces lactis. Two transcriptional start site (tss) pools are detectable using primer extension, and their selection is heme dependent. One of these tss pools is located 5' of the first translation initiation codon (TIC) in the open reading frame of KlHEM13, while the other is located between the first and second TICs. In terms of functional significance, only s-KlCpo complements the heme deficiency caused by the Δhem13 deletion in K. lactis. Data obtained from immune detection in subcellular fractions, directed mutagenesis, chromatin immunoprecipitation (ChIP) assays, and the functional relevance of ΔKlhem13 deletion for KlHEM13 promoter activity suggest that l-KlCpo regulates KlHEM13 transcription. A hypothetical model of the evolutionary origins and coexistence of these two proteins in K. lactis is discussed.


Asunto(s)
Coproporfirinógeno Oxidasa/genética , Proteínas Fúngicas/genética , Kluyveromyces/enzimología , Kluyveromyces/genética , Secuencia de Aminoácidos , Secuencia de Bases , Coproporfirinógeno Oxidasa/química , Coproporfirinógeno Oxidasa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Kluyveromyces/química , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Sitio de Iniciación de la Transcripción , Transcripción Genética
8.
Biomolecules ; 12(5)2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35625631

RESUMEN

In order to identify factors involved in transcription of human snRNA genes and 3' end processing of the transcripts, we have carried out CRISPR affinity purification in situ of regulatory elements (CAPTURE), which is deadCas9-mediated pull-down, of the tandemly repeated U2 snRNA genes in human cells. CAPTURE enriched many factors expected to be associated with these human snRNA genes including RNA polymerase II (pol II), Cyclin-Dependent Kinase 7 (CDK7), Negative Elongation Factor (NELF), Suppressor of Ty 5 (SPT5), Mediator 23 (MED23) and several subunits of the Integrator Complex. Suppressor of Ty 6 (SPT6); Cyclin K, the partner of Cyclin-Dependent Kinase 12 (CDK12) and Cyclin-Dependent Kinase 13 (CDK13); and SWI/SNF chromatin remodelling complex-associated SWI/SNF-related, Matrix-associated, Regulator of Chromatin (SMRC) factors were also enriched. Several polyadenylation factors, including Cleavage and Polyadenylation Specificity Factor 1 (CPSF1), Cleavage Stimulation Factors 1 and 2 (CSTF1,and CSTF2) were enriched by U2 gene CAPTURE. We have already shown by chromatin immunoprecipitation (ChIP) that CSTF2-and Pcf11 and Ssu72, which are also polyadenylation factors-are associated with the human U1 and U2 genes. ChIP-seq and ChIP-qPCR confirm the association of SPT6, Cyclin K, and CDK12 with the U2 genes. In addition, knockdown of SPT6 causes loss of subunit 3 of the Integrator Complex (INTS3) from the U2 genes, indicating a functional role in snRNA gene expression. CAPTURE has therefore expanded the repertoire of transcription and RNA processing factors associated with these genes and helped to identify a functional role for SPT6.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Nuclear Pequeño , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Humanos , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
9.
Nat Struct Mol Biol ; 23(9): 771-7, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27605205

RESUMEN

The C-terminal domain (CTD) of the large subunit of RNA polymerase (pol) II comprises conserved heptad repeats, and post-translational modification of the CTD regulates transcription and cotranscriptional RNA processing. Recently, the spatial patterns of modification of the CTD repeats have been investigated, and new functions of CTD modification have been revealed. In addition, there are new insights into the roles of the enzymes that decorate the CTD. We review these new findings and reassess the role of the pol II CTD in the regulation of gene expression.


Asunto(s)
ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , Regulación de la Expresión Génica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Transcripción Genética , Animales , Secuencia de Consenso , Quinasa 9 Dependiente de la Ciclina/metabolismo , Humanos , Fosforilación , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
10.
Inside Cell ; 1(2): 106-116, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27398404

RESUMEN

Positive transcription elongation factor b (P-TEFb), which comprises cyclin-dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P-TEFb is required for productive elongation of transcription of protein-coding genes by RNA polymerase II (pol II). In addition, P-TEFb-mediated phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P-TEFb could be effective anti-viral agents.

11.
Transcription ; 6(5): 79-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26399478

RESUMEN

CTCF is a versatile transcription factor with well-established roles in chromatin organization and insulator function. Recent findings also implicate CTCF in the control of elongation by RNA polymerase (RNAP) II. Here we show that CTCF knockdown abrogates RNAP II pausing at the early elongation checkpoint of c-myc by affecting recruitment of DRB-sensitivity-inducing factor (DSIF). CTCF knockdown also causes a termination defect on the U2 snRNA genes (U2), by affecting recruitment of negative elongation factor (NELF). In addition, CTCF is required for recruitment of positive elongation factor b (P-TEFb), which phosphorylates NELF, DSIF, and Ser2 of the RNAP II CTD to activate elongation of transcription of c-myc and recognition of the snRNA gene-specific 3' box RNA processing signal. These findings implicate CTCF in a complex network of protein:protein/protein:DNA interactions and assign a key role to CTCF in controlling RNAP II transcription through the elongation checkpoint of the protein-coding c-myc and the termination site of the non-coding U2, by regulating the recruitment and/or activity of key players in these processes.


Asunto(s)
Proteínas Nucleares/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Factor de Unión a CCCTC , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Fosforilación , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas Represoras/metabolismo
12.
Nat Struct Mol Biol ; 22(5): 396-403, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25849141

RESUMEN

Transcription through early-elongation checkpoints requires phosphorylation of negative transcription elongation factors (NTEFs) by the cyclin-dependent kinase (CDK) 9. Using CDK9 inhibitors and global run-on sequencing (GRO-seq), we have mapped CDK9 inhibitor-sensitive checkpoints genome wide in human cells. Our data indicate that early-elongation checkpoints are a general feature of RNA polymerase (pol) II-transcribed human genes and occur independently of polymerase stalling. Pol II that has negotiated the early-elongation checkpoint can elongate in the presence of inhibitors but, remarkably, terminates transcription prematurely close to the terminal polyadenylation (poly(A)) site. Our analysis has revealed an unexpected poly(A)-associated elongation checkpoint, which has major implications for the regulation of gene expression. Interestingly, the pattern of modification of the C-terminal domain of pol II terminated at this new checkpoint largely mirrors the pattern normally found downstream of the poly(A) site, thus suggesting common mechanisms of termination.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/biosíntesis , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Secuencia de Bases , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Células HEK293 , Células HeLa , Humanos , Extensión de la Cadena Peptídica de Translación/genética , Regiones Promotoras Genéticas/genética , Interferencia de ARN , ARN Polimerasa II , ARN Interferente Pequeño , Análisis de Secuencia de ADN
13.
PLoS One ; 9(9): e107654, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25233083

RESUMEN

The Herpes Simplex Virus 1 (HSV-1)-encoded ICP22 protein plays an important role in viral infection and affects expression of host cell genes. ICP22 is known to reduce the global level of serine (Ser)2 phosphorylation of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 heptapeptide repeats comprising the carboxy-terminal domain (CTD) of the large subunit of RNA polymerase (pol) II. Accordingly, ICP22 is thought to associate with and inhibit the activity of the positive-transcription elongation factor b (P-TEFb) pol II CTD Ser2 kinase. We show here that ICP22 causes loss of CTD Ser2 phosphorylation from pol II engaged in transcription of protein-coding genes following ectopic expression in HeLa cells and that recombinant ICP22 interacts with the CDK9 subunit of recombinant P-TEFb. ICP22 also interacts with pol II in vitro. Residues 193 to 256 of ICP22 are sufficient for interaction with CDK9 and inhibition of pol II CTD Ser2 phosphorylation but do not interact with pol II. These results indicate that discrete regions of ICP22 interact with either CDK9 or pol II and that ICP22 interacts directly with CDK9 to inhibit expression of host cell genes.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Herpesvirus Humano 1/genética , Proteínas Inmediatas-Precoces/metabolismo , Factor B de Elongación Transcripcional Positiva/antagonistas & inhibidores , ARN Polimerasa II/antagonistas & inhibidores , Línea Celular Tumoral , Células HeLa , Humanos , Fosforilación , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Quinasas/metabolismo , ARN Polimerasa II/genética , Transcripción Genética/genética
14.
Transcription ; 3(2): 92-104, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22441827

RESUMEN

Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Proteína de Unión a TATA-Box/metabolismo , Actinas/genética , Actinas/metabolismo , Inmunoprecipitación de Cromatina , Células HeLa , Humanos , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN Nuclear Pequeño/genética , Factores Asociados con la Proteína de Unión a TATA/antagonistas & inhibidores , Factores Asociados con la Proteína de Unión a TATA/genética , Proteína de Unión a TATA-Box/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA