RESUMEN
G protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions. Here, we demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units. Low concentrations of glucagon-like peptide 1 (GLP-1) and isoproterenol exclusively generate highly localized cAMP pools around GLP-1- and ß2-adrenergic receptors, respectively, which are protected from cAMP originating from other receptors and cell compartments. Mapping local cAMP concentrations with engineered GPCR nanorulers reveals gradients over only tens of nanometers that define the size of individual RAINs. The coexistence of many such RAINs allows a single cell to operate thousands of independent cellular signals simultaneously, rather than function as a simple "on/off" switch.
Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Fenómenos Fisiológicos Celulares , AMP Cíclico , Péptido 1 Similar al Glucagón , Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G/química , Sistemas de Mensajero SecundarioRESUMEN
3', 5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signalling pathway, how they organized are inside the intracellular space and how they achieve exquisite regulation of signalling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalised cAMP signaling and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
RESUMEN
G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.
Asunto(s)
Desarrollo de Medicamentos , Transducción de Señal , Humanos , Membrana CelularRESUMEN
BACKGROUND: Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac ß-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. METHODS: Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with ß-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. RESULTS: We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. CONCLUSIONS: We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.
Asunto(s)
AMP Cíclico , Miocitos Cardíacos , Humanos , Proteómica , Hidrolasas Diéster Fosfóricas , Hipertrofia , AdrenérgicosRESUMEN
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Excessive stimulation of the inositol (1,4,5)-trisphosphate (IP3) signaling pathway has been linked to AF through abnormal calcium handling. However, little is known about the mechanisms involved in this process. We expressed the fluorescence resonance energy transfer (FRET)-based cytosolic cyclic adenosine monophosphate (cAMP) sensor EPAC-SH187 in neonatal rat atrial myocytes (NRAMs) and neonatal rat ventricular myocytes (NRVMs). In NRAMs, the addition of the α1-agonist, phenylephrine (PE, 3 µM), resulted in a FRET change of 21.20 ± 7.43%, and the addition of membrane-permeant IP3 derivative 2,3,6-tri-O-butyryl-myo-IP3(1,4,5)-hexakis(acetoxymethyl)ester (IP3-AM, 20 µM) resulted in a peak of 20.31 ± 6.74%. These FRET changes imply an increase in cAMP. Prior application of IP3 receptor (IP3R) inhibitors 2-aminoethyl diphenylborinate (2-APB, 2.5 µM) or Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to PE. Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to IP3-AM. The FRET change in response to PE in NRVMs was not inhibited by 2-APB or Xestospongin-C. Finally, the localization of cAMP signals was tested by expressing the FRET-based cAMP sensor, AKAP79-CUTie, which targets the intracellular surface of the plasmalemma. We found in NRAMs that PE led to FRET change corresponding to an increase in cAMP that was inhibited by 2-APB and Xestospongin-C. These data support further investigation of the proarrhythmic nature and components of IP3-induced cAMP signaling to identify potential pharmacological targets.NEW & NOTEWORTHY This study shows that indirect activation of the IP3 pathway in atrial myocytes using phenylephrine and direct activation using IP3-AM leads to an increase in cAMP and is in part localized to the cell membrane. These changes can be pharmacologically inhibited using IP3R inhibitors. However, the cAMP rise in ventricular myocytes is independent of IP3R calcium release. Our data support further investigation into the proarrhythmic nature of IP3-induced cAMP signaling.
Asunto(s)
AMP Cíclico , Citosol , Transferencia Resonante de Energía de Fluorescencia , Atrios Cardíacos , Receptores de Inositol 1,4,5-Trifosfato , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , AMP Cíclico/metabolismo , Atrios Cardíacos/metabolismo , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/citología , Citosol/metabolismo , Ratas , Ratas Sprague-Dawley , Células Cultivadas , Animales Recién Nacidos , Compuestos de Boro/farmacología , Fenilefrina/farmacología , Señalización del Calcio/efectos de los fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacosRESUMEN
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Asunto(s)
AMP Cíclico , Transducción de Señal , Membrana Celular , Humanos , Receptores Acoplados a Proteínas GRESUMEN
cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
Asunto(s)
AMP Cíclico , Proteómica , Transducción de Señal/fisiología , Sistemas de Mensajero SecundarioRESUMEN
BACKGROUND: Kinase oxidation is a critical signaling mechanism through which changes in the intracellular redox state alter cardiac function. In the myocardium, PKARIα (type-1 protein kinase A) can be reversibly oxidized, forming interprotein disulfide bonds in the holoenzyme complex. However, the effect of PKARIα disulfide formation on downstream signaling in the heart, particularly under states of oxidative stress such as ischemia and reperfusion (I/R), remains unexplored. METHODS: Atrial tissue obtained from patients before and after cardiopulmonary bypass and reperfusion and left ventricular (LV) tissue from mice subjected to I/R or sham surgery were used to assess PKARIα disulfide formation by immunoblot. To determine the effect of disulfide formation on PKARIα catalytic activity and subcellular localization, live-cell fluorescence imaging and stimulated emission depletion super-resolution microscopy were performed in prkar1 knock-out mouse embryonic fibroblasts, neonatal myocytes, or adult LV myocytes isolated from "redox dead" (Cys17Ser) PKARIα knock-in mice and their wild-type littermates. Comparison of intracellular calcium dynamics between genotypes was assessed in fura2-loaded LV myocytes, whereas I/R-injury was assessed ex vivo. RESULTS: In both humans and mice, myocardial PKARIα disulfide formation was found to be significantly increased (2-fold in humans, P=0.023; 2.4-fold in mice, P<0.001) in response to I/R in vivo. In mouse LV cardiomyocytes, disulfide-containing PKARIα was not found to impact catalytic activity, but instead led to enhanced AKAP (A-kinase anchoring protein) binding with preferential localization of the holoenzyme to the lysosome. Redox-dependent regulation of lysosomal two-pore channels by PKARIα was sufficient to prevent global calcium release from the sarcoplasmic reticulum in LV myocytes, without affecting intrinsic ryanodine receptor leak or phosphorylation. Absence of I/R-induced PKARIα disulfide formation in "redox dead" knock-in mouse hearts resulted in larger infarcts (2-fold, P<0.001) and a concomitant reduction in LV contractile recovery (1.6-fold, P<0.001), which was prevented by administering the lysosomal two-pore channel inhibitor Ned-19 at the time of reperfusion. CONCLUSIONS: Disulfide modification targets PKARIα to the lysosome, where it acts as a gatekeeper for two-pore channel-mediated triggering of global calcium release. In the postischemic heart, this regulatory mechanism is critical for protection from extensive injury and offers a novel target for the design of cardioprotective therapeutics.
Asunto(s)
Calcio/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Daño por Reperfusión Miocárdica/terapia , Animales , Humanos , Ratones , Oxidación-ReducciónRESUMEN
By limiting unrestricted activation of intracellular effectors, compartmentalized signaling of cyclic nucleotides confers specificity to extracellular stimuli and is critical for the development and health of cells and organisms. Dissecting the molecular mechanisms that allow local control of cyclic nucleotide signaling is essential for our understanding of physiology and pathophysiology, but mapping the dynamics and regulation of compartmentalized signaling is a challenge. In this minireview we summarize advanced imaging and proteomics techniques that have been successfully used to probe compartmentalized cAMP signaling in eukaryotic cells. Subcellularly targeted fluorescence resonance energy transfer sensors can precisely locate and measure compartmentalized cAMP, and this allows us to estimate the range of effector activation. Because cAMP effector proteins often cluster together with their targets and cAMP regulatory proteins to form discrete cAMP signalosomes, proteomics and phosphoproteomics analysis have more recently been used to identify additional players in the cAMP-signaling cascade. We propose that the synergistic use of the techniques discussed could prove fruitful in generating a detailed map of cAMP signalosomes and reveal new details of compartmentalized signaling. Compiling a dynamic map of cAMP nanodomains in defined cell types would establish a blueprint for better understanding the alteration of signaling compartments associated with disease and would provide a molecular basis for targeted therapeutic strategies. SIGNIFICANCE STATEMENT: cAMP signaling is compartmentalized. Some functionally important cellular signaling compartments operate on a nanometer scale, and their integrity is essential to maintain cellular function and appropriate responses to extracellular stimuli. Compartmentalized signaling provides an opportunity for precision medicine interventions. Our detailed understanding of the composition, function, and regulation of cAMP-signaling nanodomains in health and disease is essential and will benefit from harnessing the right combination of advanced biochemical and imaging techniques.
Asunto(s)
Proteínas de Unión al GTP/metabolismo , Fosforilación/fisiología , Proteoma/metabolismo , Transducción de Señal/fisiología , Animales , AMP Cíclico/metabolismo , Humanos , Proteómica/métodosRESUMEN
Inositol trisphosphate (IP3) is a Ca2+-mobilizing second messenger shown to modulate atrial muscle contraction and is thought to contribute to atrial fibrillation. Cellular pathways underlying IP3 actions in cardiac tissue remain poorly understood, and the work presented here addresses the question whether IP3-mediated Ca2+ release from the sarcoplasmic reticulum is linked to adenylyl cyclase activity including Ca2+-stimulated adenylyl cyclases (AC1 and AC8) that are selectively expressed in atria and sinoatrial node (SAN). Immunocytochemistry in guinea pig atrial myocytes identified colocalization of type 2 IP3 receptors with AC8, while AC1 was located in close vicinity. Intracellular photorelease of IP3 by UV light significantly enhanced the amplitude of the Ca2+ transient (CaT) evoked by electrical stimulation of atrial myocytes (31 ± 6% increase 60 s after photorelease, n = 16). The increase in CaT amplitude was abolished by inhibitors of adenylyl cyclases (MDL-12,330) or protein kinase A (H89), showing that cAMP signaling is required for this effect of photoreleased IP3. In mouse, spontaneously beating right atrial preparations, phenylephrine, an α-adrenoceptor agonist with effects that depend on IP3-mediated Ca2+ release, increased the maximum beating rate by 14.7 ± 0.5%, n = 10. This effect was substantially reduced by 2.5 µmol/L 2-aminoethyl diphenylborinate and abolished by a low dose of MDL-12,330, observations which are again consistent with a functional interaction between IP3 and cAMP signaling involving Ca2+ stimulation of adenylyl cyclases in the SAN pacemaker. Understanding the interaction between IP3 receptor pathways and Ca2+-stimulated adenylyl cyclases provides important insights concerning acute mechanisms for initiation of atrial arrhythmias.NEW & NOTEWORTHY This study provides evidence supporting the proposal that IP3 signaling in cardiac atria and sinoatrial node involves stimulation of Ca2+-activated adenylyl cyclases (AC1 and AC8) by IP3-evoked Ca2+ release from junctional sarcoplasmic reticulum. AC8 and IP3 receptors are shown to be located close together, while AC1 is nearby. Greater understanding of these novel aspects of the IP3 signal transduction mechanism is important for future study in atrial physiology and pathophysiology, particularly atrial fibrillation.
Asunto(s)
Adenilil Ciclasas/metabolismo , Relojes Biológicos , Señalización del Calcio , Atrios Cardíacos/enzimología , Frecuencia Cardíaca , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miocitos Cardíacos/enzimología , Nodo Sinoatrial/enzimología , Potenciales de Acción , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cobayas , Atrios Cardíacos/citología , Isoenzimas , Masculino , Ratones , Retículo Sarcoplasmático/enzimología , Factores de TiempoRESUMEN
Cystic Fibrosis (CF), the most common lethal autosomic recessive disorder among Caucasians, is caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, a cAMP-regulated chloride channel expressed at the apical surface of epithelial cells. Cyclic AMP regulates both CFTR channel gating through a protein kinase A (PKA)-dependent process and plasma membane (PM) stability through activation of the exchange protein directly activated by cAMP1 (EPAC1). This cAMP effector, when activated promotes the NHERF1:CFTR interaction leading to an increase in CFTR at the PM by decreasing its endocytosis. Here, we used protein interaction profiling and bioinformatic analysis to identify proteins that interact with CFTR under EPAC1 activation as possible regulators of this CFTR PM anchoring. We identified an enrichment in cytoskeleton related proteins among which we characterized CAPZA2 and INF2 as regulators of CFTR trafficking to the PM. We found that CAPZA2 promotes wt-CFTR trafficking under EPAC1 activation at the PM whereas reduction of INF2 levels leads to a similar trafficking promotion effect. These results suggest that CAPZA2 is a positive regulator and INF2 a negative one for the increase of CFTR at the PM after an increase of cAMP and concomitant EPAC1 activation. Identifying the specific interactions involving CFTR and elicited by EPAC1 activation provides novel insights into late CFTR trafficking, insertion and/or stabilization at the PM and highlighs new potential therapeutic targets to tackle CF disease.
Asunto(s)
Proteína CapZ/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Citoesqueleto/metabolismo , Forminas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Biotinilación/genética , Biotinilación/fisiología , Western Blotting , Proteína CapZ/genética , Línea Celular , Biología Computacional , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Forminas/genética , Ontología de Genes , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Inmunoprecipitación , Espectrometría de Masas , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiologíaRESUMEN
Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase-anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Microdominios de Membrana/enzimología , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Microdominios de Membrana/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Ratas , Ratas Sprague-DawleyRESUMEN
Novel targeted fluorescent biosensors provide key insights into very local nanodomains of cAMP and PKA activity, and how they respond differently to ß-adrenergic activation in cardiac myocytes. This unique spatiotemporal detail in living cells is not available with biochemical measurements of total cellular cAMP and PKA, and provides unique physiological insights.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Receptores Adrenérgicos beta/metabolismoRESUMEN
Duchenne muscular dystrophy (DMD) is the most frequent and severe form of muscular dystrophy. The disease presents with progressive body-wide muscle deterioration and, with recent advances in respiratory care, cardiac involvement is an important cause of morbidity and mortality. DMD is caused by mutations in the dystrophin gene resulting in the absence of dystrophin and, consequently, disturbance of other proteins that form the dystrophin-associated protein complex (DAPC), including neuronal nitric oxide synthase (nNOS). The molecular mechanisms that link the absence of dystrophin with the alteration of cardiac function remain poorly understood but disruption of NO-cGMP signalling, mishandling of calcium and mitochondrial disturbances have been hypothesized to play a role. cGMP and cAMP are second messengers that are key in the regulation of cardiac myocyte function and disruption of cyclic nucleotide signalling leads to cardiomyopathy. cGMP and cAMP signals are compartmentalised and local regulation relies on the activity of phosphodiesterases (PDEs). Here, using genetically encoded FRET reporters targeted to distinct subcellular compartments of neonatal cardiac myocytes from the DMD mouse model mdx, we investigate whether lack of dystrophin disrupts local cyclic nucleotide signalling, thus potentially providing an early trigger for the development of cardiomyopathy. Our data show a significant alteration of both basal and stimulated cyclic nucleotide levels in all compartments investigated, as well as a complex reorganization of local PDE activities.
Asunto(s)
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miocitos Cardíacos/metabolismo , Sistemas de Mensajero Secundario , Animales , AMP Cíclico/genética , GMP Cíclico/genética , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Miocitos Cardíacos/patologíaRESUMEN
3'-5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that modulates multiple cellular functions. It is now well established that cAMP can mediate a plethora of functional effects via a complex system of local regulatory mechanisms that result in compartmentalized signalling. The use of fluorescent probes to monitor cAMP in intact, living cells have been instrumental in furthering our appreciation of this ancestral and ubiquitous pathway and unexpected details of the nano-architecture of the cAMP signalling network are starting to emerge. Recent evidence shows that sympathetic control of cardiac contraction and relaxation is achieved via generation of multiple, distinct pools of cAMP that lead to differential phosphorylation of target proteins localized only tens of nanometres apart. The specific local control at these nanodomains is enabled by a distinct signalosome where effectors, targets, and regulators of the cAMP signal are clustered. In this review, we focus on recent advances using targeted fluorescent reporters for cAMP and how they have contributed to our current understanding of nanodomain cAMP signalling in the heart. We briefly discuss how this information can be exploited to design novel therapies and we highlight some of the questions that remain unanswered.
Asunto(s)
AMP Cíclico/metabolismo , Miocardio/metabolismo , Animales , Transferencia Resonante de Energía de Fluorescencia , Humanos , Fosforilación , Sistemas de Mensajero Secundario , Transducción de SeñalRESUMEN
Cyclic AMP (cAMP) activates protein kinase A (PKA) but also the guanine nucleotide exchange factor 'exchange protein directly activated by cAMP' (EPAC1; also known as RAPGEF3). Although phosphorylation by PKA is known to regulate CFTR channel gating - the protein defective in cystic fibrosis - the contribution of EPAC1 to CFTR regulation remains largely undefined. Here, we demonstrate that in human airway epithelial cells, cAMP signaling through EPAC1 promotes CFTR stabilization at the plasma membrane by attenuating its endocytosis, independently of PKA activation. EPAC1 and CFTR colocalize and interact through protein adaptor NHERF1 (also known as SLC9A3R1). This interaction is promoted by EPAC1 activation, triggering its translocation to the plasma membrane and binding to NHERF1. Our findings identify a new CFTR-interacting protein and demonstrate that cAMP activates CFTR through two different but complementary pathways - the well-known PKA-dependent channel gating pathway and a new mechanism regulating endocytosis that involves EPAC1. The latter might constitute a novel therapeutic target for treatment of cystic fibrosis.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Factores de Intercambio de Guanina Nucleótido/genética , Fosfoproteínas/genética , Intercambiadores de Sodio-Hidrógeno/genética , Células A549 , AMP Cíclico/administración & dosificación , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endocitosis/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas/genética , Sistema Respiratorio/metabolismo , Sistema Respiratorio/patología , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/metabolismoRESUMEN
The most common mutation of the cystic fibrosis transmembrane regulator (CFTR) gene, F508del, produces a misfolded protein resulting in its defective trafficking to the cell surface and an impaired chloride secretion. Pharmacological treatments partially rescue F508del CFTR activity either directly by interacting with the mutant protein and/or indirectly by altering the cellular protein homeostasis. Here, we show that the phosphorylation of ezrin together with its binding to phosphatidylinositol-4,5-bisphosphate (PIP2) tethers the F508del CFTR to the actin cytoskeleton, stabilizing it on the apical membrane and rescuing the sub-membrane compartmentalization of cAMP and activated PKA. Both the small molecules trimethylangelicin (TMA) and VX-809, which act as 'correctors' for F508del CFTR by rescuing F508del-CFTR-dependent chloride secretion, also restore the apical expression of phosphorylated ezrin and actin organization and increase cAMP and activated PKA submembrane compartmentalization in both primary and secondary cystic fibrosis airway cells. Latrunculin B treatment or expression of the inactive ezrin mutant T567A reverse the TMA and VX-809-induced effects highlighting the role of corrector-dependent ezrin activation and actin re-organization in creating the conditions to generate a sub-cortical cAMP pool of adequate amplitude to activate the F508del-CFTR-dependent chloride secretion.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Animales , Cloruros/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Fibrosis Quística/enzimología , Fibrosis Quística/genética , Proteínas del Citoesqueleto/genética , Citoesqueleto/genética , Humanos , Fosforilación , Ratas , Eliminación de Secuencia , Transducción de SeñalRESUMEN
Fluorescence resonance energy transfer (FRET)-based sensors for 3′â»5′cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) allow real-time imaging of cAMP levels and kinase activity in intact cells with high spatiotemporal resolution. The development of FRET-based sensors has made it possible to directly demonstrate that cAMP and PKA signals are compartmentalized. These sensors are currently widely used to dissect the organization and physiological function of local cAMP/PKA signaling events in a variety of cell systems. Fusion to targeting domains has been used to direct the sensors to a specific subcellular nanodomain and to monitor cAMP and PKA activity at specific subcellular sites. Here, we investigate the effects of using the A-kinase anchoring protein 79 (AKAP79) as a targeting domain for cAMP and PKA FRET-based reporters. As AKAP79 interacts with PKA itself, when used as a targeting domain, it can potentially impact on the amplitude and kinetics of the signals recorded locally. By using as the targeting domain wild type AKAP79 or a mutant that cannot interact with PKA, we establish that AKAP79 does not affect the amplitude and kinetics of cAMP changes or the level of PKA activity detected by the sensor.
Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/análisis , AMP Cíclico/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Animales , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocitos Cardíacos/citología , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de SeñalRESUMEN
3'-5'-Cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling is activated by different extracellular stimuli and mediates many diverse processes within the same cell. It is now well established that in order to translate into the appropriate cellular function multiple extracellular inputs, which may act simultaneously on the same cell, the cAMP/PKA signalling pathway is compartmentalised. Multimolecular complexes are organised at specific subcellular sites to generate spatially confined signalosomes, which include effectors, modulators and targets of the pathway. In recent years, it has become evident that mitochondria represent sites of compartmentalised cAMP signalling. However, the exact location and the molecular composition of distinct mitochondria signalosomes and their function remain largely unknown. In this review, we focus on individual components of the cAMP/PKA signalling pathway at distinct mitochondria subdomains represented by the outer and inner mitochondrial membranes, the intermembrane space and the matrix, highlighting some of the questions that remain unanswered.
Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Animales , Humanos , Membranas Mitocondriales/metabolismo , Modelos BiológicosRESUMEN
RATIONALE: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE: How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS: Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.