RESUMEN
Understanding the molecular processes and hormonal signals that govern root growth is of paramount importance for effective forest management. While Arabidopsis studies have shed light on the role of the primary root in root system development, the structure of root systems in trees is considerably more intricate, posing challenges to comprehend taproot growth in acorn-sown and nursery-cultivated seedlings. In this study, we investigated Quercus robur seedlings using rhizotrons, containers, and transplanted containers to rhizotrons, aiming to unravel the impact of forest nursery practices on processes governing taproot growth and root system development. Root samples were subjected to RNA-seq analysis to identify gene expression patterns and perform differential gene expression and phytohormone analysis. Among studied cultivation systems, differentially expressed genes (DEGs) exhibited significant diversity, where the number of co-occurring DEGs among cultivation systems was significantly smaller than the number of unique DEGs in different cultivation systems. Moreover, the results imply that container cultivation triggers the activation of several genes associated with linolenic acid and peptide synthesis in root growth. Upon transplantation from containers to rhizotrons, rapid enhancement in gene expression occurs, followed by gradual reduction as root growth progresses, ultimately reaching a similar expression pattern as observed in the taproot of rhizotron-cultivated seedlings. Phytohormone analysis revealed that taproot growth patterns under different cultivation systems are regulated by the interplay between auxin and cytokinin concentrations. Moreover, the diversification of hormone levels within the root zone and cultivation systems allows for taproot growth inhibition and prompt recovery in transplanted seedlings. Our study highlights the crucial role of hormone interactions during the early stages of taproot elongation, influencing root system formation across.
Asunto(s)
Arabidopsis , Quercus , Quercus/metabolismo , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/metabolismo , Hormonas/metabolismo , Hormonas/farmacología , Regulación de la Expresión Génica de las PlantasRESUMEN
The commonly observed negative relationship between stomatal density (SD) and atmospheric CO2 has led to SD being proposed as an indicator of atmospheric CO2 concentration. The use of SD as a proxy for CO2 , however, has been hampered by an insufficient understanding of the intraspecific variation of this trait. We hypothesized that SD in Pinus sylvestris, a widely distributed conifer, varies geographically and that this variation is determined by major climatic variables. By sampling needles from naturally growing trees along a latitudinal range of 32.25°, equivalent to 13.7°C gradient of mean annual temperature (MAT) across Europe, we found that SD decreased from the warmest southern sites to the coldest sites in the north at a rate of 4 stomata per mm2 for each 1°C, with MAT explaining 44% of the variation. Additionally, samples from a provenance trial exhibited a positive relationship between SD and the MAT of the original localities, suggesting that high SD is an adaptation to warm temperature. Our study revealed one of the strongest intraspecific relationships between SD and climate in any woody species, supporting the utility of SD as a temperature, rather than direct CO2 , proxy. In addition, our results predict the response of SD to climate warming.
Asunto(s)
Dióxido de Carbono , Pinus sylvestris/fisiología , Estomas de Plantas/fisiología , Adaptación Fisiológica , Clima , Europa (Continente) , Pinus sylvestris/anatomía & histología , Estomas de Plantas/anatomía & histología , TemperaturaRESUMEN
The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.
Asunto(s)
Ecosistema , Plantas , Atmósfera , Ecología , FenotipoRESUMEN
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Asunto(s)
Ecosistema , Plantas , Bases de Datos Factuales , Ecología , FenotipoRESUMEN
Harsh environmental conditions affect both leaf structure and root traits. However, shoot growth in high-latitude systems is predominately under photoperiod control while root growth may occur for as long as thermal conditions are favorable. The different sensitivities of these organs may alter functional relationships above- and belowground along environmental gradients. We examined the relationship between absorptive root and foliar traits of Scots pine trees growing in situ along a temperate-boreal transect and in trees grown in a long-term common garden at a temperate latitude. We related changes in foliar nitrogen, phosphorus, specific leaf area, needle mass and 13 C signatures to geographic trends in absorptive root biomass to better understand patterns of altered tree nutrition and water balance. Increased allocation to absorptive fine roots was associated with greater uptake of soil nutrients and subsequently higher needle nutrient contents in the northern provenances compared with more southern provenances when grown together in a common garden setting. In contrast, the leaf δ13 C in northern and southern provenances were similar within the common garden suggesting that higher absorptive root biomass fractions could not adequately increase water supply in warmer climates. These results highlight the importance of allocation within the fine-root system and its impacts on needle nutrition while also suggesting increasing stomatal limitation of photosynthesis in the context of anticipated climatic changes.
Asunto(s)
Pinus sylvestris , Pinus , Biomasa , Clima , Hojas de la Planta , Raíces de Plantas , ÁrbolesRESUMEN
Climate change has likely altered high-latitude forests globally, but direct evidence remains rare. Here we show that throughout a ≈1000-km transect in Scots pine (Pinus sylvestris L.) forests in Sweden, mature trees in ≈2015 had longer needles with shorter lifetimes than did trees in ≈1915. These century-scale shifts in needle traits were detected by sampling needles at 74 sites from 2012 to 2017 along the same transect where needle traits had been assessed at 57 sites in 1914-1915. Climate warming of ≈1 °C all along the transect in the past century has driven this temporal shift in foliage traits known to be physiologically critical to growth and carbon cycling processes. These century-scale changes in Scandinavian Scots pine forests represent a fingerprint of climate change on a fundamental biological element, the leaf, with repercussions for productivity and sensitivity to future climate, which are likely to be mirrored by similar changes for evergreen conifers across the boreal biome.
Asunto(s)
Cambio Climático , Pinus , Bosques , Suecia , ÁrbolesRESUMEN
MAIN CONCLUSION: Siderophores are a driver of Pinus sylvestris root responses to metabolites secreted by pathogenic and mycorrhizal fungi. Structurally different siderophores regulate the uptake of Fe by microorganisms and may play a key role in the colonization of plants by beneficial or pathogenic fungi. Siderophore action, however, may be dependent on the distribution of Fe within cells. Here, the involvement of siderophores in determining the changes of organelle morphology and element composition of some cellular fractions of root cells in Pinus sylvestris to trophically diverse fungi was investigated. Changes in the morphology and concentrations of different elements within organelles of root cells in response to three structurally different siderophores were examined by transmission electron microscopy combined with energy-dispersive X-ray spectroscopy. Weak development of mitochondrial cristae and the deposition of backup materials in plastids occurred in the absence of Fe in the structures of triacetylfusarinine C and ferricrocin. In response to metabolites of both pathogenic and mycorrhizal fungi, Fe accumulated mainly in the cell walls and cytoplasm. Fe counts increased in all of the analyzed organelles in response to applications of ferricrocin and triacetylfusarinine C. Chelation of Fe within the structure of siderophores prevents the binding of exogenous Fe, decreasing the abundance of Fe in the cell wall and cytoplasm. The concentrations of N, P, K, Ca, Mn, Cu, Mg, and Zn also increased in cells after applications of ferricrocin and triacetylfusarinine C, while the levels of these elements decreased in the cell wall and cytoplasm when Fe was present within the structure of the siderophores. These results provide insight into the siderophore-driven response of plants to various symbionts.
Asunto(s)
Compuestos Férricos/farmacología , Ferricromo/análogos & derivados , Ácidos Hidroxámicos/farmacología , Hierro/metabolismo , Micorrizas/fisiología , Pinus sylvestris/efectos de los fármacos , Sideróforos/farmacología , Núcleo Celular/ultraestructura , Pared Celular/metabolismo , Citoplasma/metabolismo , Deferoxamina/química , Deferoxamina/farmacología , Compuestos Férricos/química , Ferricromo/química , Ferricromo/farmacología , Hongos/fisiología , Ácidos Hidroxámicos/química , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Orgánulos/efectos de los fármacos , Orgánulos/ultraestructura , Pinus sylvestris/microbiología , Pinus sylvestris/ultraestructura , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Raíces de Plantas/ultraestructura , Sideróforos/metabolismoRESUMEN
BACKGROUND AND AIMS: The reliance on external support by lianas has been hypothesized to imply a reduction in the biomass cost of stem construction and root anchorage, and an increased investment in leaves, relative to self-supporting plants. These evolutionary trade-offs have not been adequately tested in an ontogenetic context and on the whole-plant scale. Moreover, the hypothesis may be extended to other potentially limiting resources, such as nitrogen (N.). METHODS: Plants belonging to five con-familiar pairs of temperate liana/shrub species were cultivated in 120 L barrels and sequentially harvested over up to three growing seasons. To account for the ontogenetic drift, organ biomass and nitrogen fractions were adjusted for plant biomass and N pool, respectively. KEY RESULTS: Lianas invested, on average, relatively less biomass in the root fraction in comparison with shrubs. This was offset by only insignificant increases in leaf or stem investment. Even though liana stems and roots showed higher N concentration in comparison with shrubs, plant N distribution was mostly driven by, and largely matched, the pattern of biomass distribution. Lianas also showed a greater relative growth rate than shrubs. The differences between the growth forms became apparent only when ontogenetic drift was controlled for. These results were confirmed regardless of whether reproductive biomass was included in the analysis. CONCLUSIONS: Our results suggest that temperate lianas, in spite of their diverse, species-specific resource distribution patterns, preferentially allocate resources to above-ground organs at the expense of roots. By identifying this trade-off and demonstrating the lack of a general trend for reduction in stem investment in lianas, we significantly modify the prevailing view of liana allocation strategies and evolutionary advantages. Such a resource distribution pattern, along with the cheap unit leaf area and stem unit length construction, situates lianas as a group close to the fast acquisition/rapid growth end of the life strategy spectrum.
Asunto(s)
Nitrógeno , Árboles , Biomasa , Hojas de la Planta , PlantasRESUMEN
Protein acetylation affects gene expression, as well as other processes in cells, and it might be dependent on the availability of the metals. However, whether iron chelating compounds (siderophores) can have an effect on the acetylation process in plant roots is largely unknown. In the present study, western blotting and confocal microscopy was used to examine the degree of acetylation of histone H3 and alpha tubulin in Pinus sylvestris root cells in the presence of structurally different siderophores. The effect of metabolites that were produced by pathogenic and mycorrhizal fungi was also assessed. No effect was observed on histone acetylation. By contrast, the metabolites of the pathogenic fungus were able to decrease the level of microtubule acetylation, whereas treatment with iron-free ferrioxamine (DFO) was able to increase it. This latter was not observed when ferrioxamine-iron complexes were used. The pathogen metabolites induced important modifications of cytoskeleton organization. Siderophores also induced changes in the tubulin skeleton and these changes were iron-dependent. The effect of siderophores on the microtubule network was dependent on the presence of iron. More root cells with a depolymerized cytoskeleton were observed when the roots were exposed to iron-free siderophores and the metabolites of pathogenic fungi; whereas, the metabolites from mycorrhizal fungi and iron-enriched forms of siderophores slightly altered the cytoskeleton network of root cells. Collectively, these data indicated that the metabolites of pathogenic fungi mirror siderophore action, and iron limitation can lead to enhanced alternations in cell structure and physiology.
Asunto(s)
Histonas/metabolismo , Ácidos Hidroxámicos/química , Pinus sylvestris/citología , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Sideróforos/química , Tubulina (Proteína)/metabolismo , Acetilación , Muerte Celular , Metaboloma , Microtúbulos/metabolismo , Micorrizas/metabolismo , Micorrizas/patogenicidad , Raíces de Plantas/microbiologíaRESUMEN
Background and Aims: Understanding root traits and their trade-off with other plant processes is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of several orders of fine roots (<2 mm) for species differing in shade tolerance (low, moderate and high). Methods: The morphological, anatomical and hydraulic traits across five distal root orders were measured in species with different levels of shade tolerance and life history strategies. The species studied were Acer negundo, Acer rubrum, Acer saccharum, Betula alleghaniensis, Betula lenta, Quercus alba, Quercus rubra, Pinus strobus and Pinus virginiana. Key Results: Compared with shade-tolerant species, shade-intolerant species produced thinner absorptive roots with smaller xylem lumen diameters and underwent secondary development less frequently, suggesting that they had shorter life spans. Shade-tolerant species had greater root specific hydraulic conductance among these roots due to having larger diameter xylems, although these roots had a lower calculated critical tension for conduit collapse. In addition, shade-intolerant species exhibited greater variation in hydraulic conductance across different root growth rings in woody transport roots of the same root order as compared with shade-tolerant species. Conclusions: Plant growth strategies were extended to include root hydraulic properties. It was found that shade intolerance in trees was associated with conservative root hydraulics but greater plasticity in number of xylem conduits and hydraulic conductance. Root traits of shade-intolerant species were consistent with the ability to proliferate roots quickly for rapid water uptake needed to support rapid shoot growth, while minimizing risk in uncertain environments.
Asunto(s)
Acer/anatomía & histología , Betula/anatomía & histología , Pinus/anatomía & histología , Transpiración de Plantas/fisiología , Quercus/anatomía & histología , Acer/fisiología , Acer/efectos de la radiación , Adaptación Fisiológica , Betula/fisiología , Betula/efectos de la radiación , Ecosistema , Luz , Pinus/fisiología , Pinus/efectos de la radiación , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de la radiación , Quercus/fisiología , Quercus/efectos de la radiación , Árboles , Agua/metabolismo , Madera , Xilema/anatomía & histología , Xilema/fisiología , Xilema/efectos de la radiaciónRESUMEN
Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual roots to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.
Asunto(s)
Ecosistema , Raíces de Plantas/fisiología , Botánica/métodos , Botánica/tendencias , Modelos Biológicos , Micorrizas , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiologíaRESUMEN
Plant functional traits may be altered as plants adapt to various environmental constraints. Cold, low fertility growing conditions are often associated with root adjustments to increase acquisition of limiting nutrient resources, but they may also result in construction of roots with reduced uptake potential but higher tissue persistence. It is ultimately unclear whether plants produce fine roots of different structure in response to decreasing temperatures and whether these changes represent a trade-off between root function or potential root persistence. We assessed patterns of root construction based on various root morphological, biochemical and defense traits including root diameter, specific root length (SRL), root tissue density (RTD), C:N ratio, phenolic compounds, and number of phellem layers across up to 10 root orders in diverse populations of Scots pine along a 2000-km climatic gradient in Europe. Our results showed that different root traits are related to mean annual temperature (MAT) and expressed a pattern of higher root diameter and lower SRL and RTD in northern sites with lower MAT. Among absorptive roots, we observed a gradual decline in chemical defenses (phenolic compounds) with decreasing MAT. In contrast, decreasing MAT resulted in an increase of structural protection (number of phellem layers) in transport fine roots. This indicated that absorptive roots with high capacity for nutrient uptake, and transport roots with low uptake capacity, were characterized by distinct and contrasting trade-offs. Our observations suggest that diminishing structural and chemical investments into the more distal, absorptive roots in colder climates is consistent with building roots of higher absorptive capacity. At the same time, roots that play a more prominent role in transport of nutrients and water within the root system saw an increase in structural investment, which can increase persistence and reduce long-term costs associated with their frequent replacement.
Asunto(s)
Pinus sylvestris/crecimiento & desarrollo , Raíces de Plantas , Europa (Continente) , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , TemperaturaRESUMEN
Patterns of plant biomass allocation and functional adjustments along climatic gradients are poorly understood, particularly belowground. Generally, low temperatures suppress nutrient release and uptake, and forests under such conditions have a greater proportion of their biomass in roots. However, it is not clear whether 'more roots' means better capacity to acquire soil resources. Herein we quantified patterns of fine-root anatomy and their biomass distribution across Scots pine (Pinus sylvestris) populations both along a 2000-km latitudinal gradient and within a common garden experiment with a similar range of populations. We found that with decreasing mean temperature, a greater percentage of Scots pine root biomass was allocated to roots with higher potential absorptive capacity. Similar results were seen in the common experimental site, where cold-adapted populations produced roots with greater absorptive capacity than populations originating from warmer climates. These results demonstrate that plants growing in or originated from colder climates have more acquisitive roots, a trait that is likely adaptive in the face of the low resource availability typical of cold soils.
Asunto(s)
Altitud , Clima , Pinus sylvestris/fisiología , Raíces de Plantas/fisiología , Europa (Continente) , Geografía , Pinus sylvestris/microbiología , Temperatura , Árboles/fisiología , AguaRESUMEN
The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi.
Asunto(s)
Fertilizantes , Bosques , Micorrizas , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Suelo/química , Árboles/fisiología , Clima , Cambio Climático , Hongos , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/microbiología , Magnoliopsida/fisiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Microbiología del Suelo , Árboles/crecimiento & desarrollo , Árboles/microbiologíaRESUMEN
Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.
Asunto(s)
Ecosistema , Raíces de Plantas/fisiología , Biomasa , Micorrizas/fisiología , Carácter Cuantitativo HeredableRESUMEN
Tree species' ability to persist within their current distribution ranges is determined by seed germination and seedling growth. Exploring variation in these traits in relation to climatic conditions helps to understand and predict tree population dynamics, and to support species management and conservation under future climate. We analyzed seeds and seedlings of 26 European beech populations from the northeastern boundary of the species range to test whether: 1) adaptation to climatic conditions is reflected in depth of dormancy and germination of seeds; 2) climatic characteristics of origin predictably affect seedling traits. The variation in seed dormancy and germination in a laboratory test, and seedling growth and morphology traits in a nursery common-garden test was examined. Populations originating from warmer and drier sites (mostly from the northern region), compared to those from the opposite end of climatic gradient, germinated later, with a lower success, and produced seedlings with shorter and tougher roots. They had deeper dormancy and poorer seed germination capacity, and are likely more vulnerable to environmental changes. The climatic conditions at the origin shape the intraspecific variation of seed germination and seedling traits, and may limit regeneration from seed and affect adaptation potential of beech to increasing temperatures and decreasing precipitation.
RESUMEN
Defence mechanisms in trees are not well understood. We assessed whether distribution of iron ions and their co-localisation with reactive oxygen species in Pinus sylvestris root cells reflect differential preferences of the pathogens Heterobasidion annosum sensu stricto, H. parviporum and H. abietinum to the host. Strains of H. annosum s.s. characterised by a greater preference for P. sylvestris induced accumulation of superoxide (O(2)(-)) in host cells 6 h after inoculation, whereas two peaks in accumulation of O(2)(-) (after 4 and 48 h) were observed after infection with strains of the pathogens H. parviporum and H. abietinum, which have a lower preference for P. sylvestris. Moreover, strains of H. annosum s.s. caused increased production of hydrogen peroxide (H(2)O(2)) in P. sylvestris cells, in contrast with strains of the other two species (H. parviporum and H. abietinum). Following inoculation with H. annosum s.s. strains, H(2)O(2) was correlated negatively with O(2)(-) and correlated positively with ferrous iron (Fe(2+)). Co-localisation of Fe(3+) with H(2)O(2) may suggest that they are involved in inducing hypersensitive responses and eventually cell death in roots inoculated with H. annosum s.s. strains, in contrast with H. parviporum, in which other mechanisms operate when the host is parasitised.
Asunto(s)
Basidiomycota/fisiología , Hierro/metabolismo , Pinus sylvestris/metabolismo , Pinus sylvestris/microbiología , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular , Compuestos Férricos/metabolismo , Compuestos Ferrosos/metabolismo , Especificidad del Huésped , Interacciones Huésped-Patógeno/fisiología , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Pinus sylvestris/citología , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Estallido Respiratorio , Plantones/citología , Plantones/metabolismo , Plantones/microbiología , Especificidad de la Especie , Coloración y Etiquetado , Superóxidos/metabolismo , Factores de Tiempo , ÁrbolesRESUMEN
PREMISE OF THE STUDY: Root systems develop to effectively absorb water and nutrients and to rapidly transport these materials to the transpiring shoot. In woody plants, roots can be born with different functions: fibrous roots are primarily used for water and nutrient absorption, whereas pioneer roots have a greater role in transport. Because pioneer roots extend rapidly in the soil and typically quickly produce fibrous roots, they need to develop transport capacity rapidly so as to avoid becoming a bottleneck to the absorbed water of the developing fibrous roots and, as we hypothesized, immediately activate a specific type of autophagy at a precise time of their development. METHODS: Using microscopy techniques, we monitored xylem development in Populus trichocarpa roots in the first 7 d after emergence under field conditions. KEY RESULTS: Newly formed pioneer roots contained more primary xylem poles and had larger diameter tracheary elements than fibrous roots. While xylogenesis started later in pioneer roots than in fibrous, it was completed at the same time, resulting in functional vessels on the third to fourth day following root emergence. Programmed cell death was responsible for creating the water conducting capacity of xylem. Although the early xylogenesis processes were similar in fibrous and pioneer roots, secondary vascular development proceeded much more rapidly in pioneer roots. CONCLUSIONS: Compared to fibrous roots, rapid development of transport capacity in pioneer roots is not primarily caused by accelerated xylogenesis but by larger and more numerous tracheary elements and by rapid initiation of secondary growth.
Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Populus/metabolismo , Xilema/crecimiento & desarrollo , Apoptosis , Transporte Biológico , Microscopía Fluorescente , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Populus/citología , Populus/ultraestructura , Xilema/citología , Xilema/ultraestructuraRESUMEN
The degree to which roots elongate is determined by the expression of genes that regulate root growth in each developmental zone of a root. Most studies have, however, focused on the molecular factors that regulate primary root growth in annual plants. In contrast, the relationship between gene expression and a specific pattern of taproot development and growth in trees is poorly understood. However, the presence of a deeply located taproot, with branching lateral roots, can especially mitigate the effect of insufficient water availability in long-lived trees, such as pedunculated oak. In the present article, we integrated the ribonucleic acid (RNA) sequencing data on roots of oak trees into a single comprehensive database, named OakRootRNADB that contains information on both coding and noncoding RNAs. The sequences in the database also enclose information pertaining to transcription factors, transcriptional regulators and chromatin regulators, as well as a prediction of the cellular localization of a transcript. OakRootRNADB has a user-friendly interface and functional tools that increase access to genomic information. Integrated knowledge of molecular patterns of expression, specifically occurring within and between root zones and within root types, can elucidate the molecular mechanisms regulating taproot growth and enhanced root soil exploration. Database URL https://oakrootrnadb.idpan.poznan.pl/.