Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2068-2083.e11, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33861964

RESUMEN

Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.


Asunto(s)
Etnicidad/genética , Salud Poblacional , Bases de Datos Genéticas , Registros Electrónicos de Salud , Genómica , Humanos , Autoinforme
2.
Am J Hum Genet ; 108(2): 219-239, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33440170

RESUMEN

We present a full-likelihood method to infer polygenic adaptation from DNA sequence variation and GWAS summary statistics to quantify recent transient directional selection acting on a complex trait. Through simulations of polygenic trait architecture evolution and GWASs, we show the method substantially improves power over current methods. We examine the robustness of the method under stratification, uncertainty and bias in marginal effects, uncertainty in the causal SNPs, allelic heterogeneity, negative selection, and low GWAS sample size. The method can quantify selection acting on correlated traits, controlling for pleiotropy even among traits with strong genetic correlation (|rg|=80%) while retaining high power to attribute selection to the causal trait. When the causal trait is excluded from analysis, selection is attributed to its closest proxy. We discuss limitations of the method, cautioning against strongly causal interpretations of the results, and the possibility of undetectable gene-by-environment (GxE) interactions. We apply the method to 56 human polygenic traits, revealing signals of directional selection on pigmentation, life history, glycated hemoglobin (HbA1c), and other traits. We also conduct joint testing of 137 pairs of genetically correlated traits, revealing widespread correlated response acting on these traits (2.6-fold enrichment, p = 1.5 × 10-7). Signs of selection on some traits previously reported as adaptive (e.g., educational attainment and hair color) are largely attributable to correlated response (p = 2.9 × 10-6 and 1.7 × 10-4, respectively). Lastly, our joint test shows antagonistic selection has increased type 2 diabetes risk and decrease HbA1c (p = 1.5 × 10-5).


Asunto(s)
Genoma Humano , Herencia Multifactorial , Selección Genética , Simulación por Computador , Diabetes Mellitus Tipo 2/genética , Evolución Molecular , Interacción Gen-Ambiente , Heterogeneidad Genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/genética , Humanos , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Tamaño de la Muestra
3.
Am J Hum Genet ; 100(1): 31-39, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28017371

RESUMEN

Mixed models have become the tool of choice for genetic association studies; however, standard mixed model methods may be poorly calibrated or underpowered under family sampling bias and/or case-control ascertainment. Previously, we introduced a liability threshold-based mixed model association statistic (LTMLM) to address case-control ascertainment in unrelated samples. Here, we consider family-biased case-control ascertainment, where case and control subjects are ascertained non-randomly with respect to family relatedness. Previous work has shown that this type of ascertainment can severely bias heritability estimates; we show here that it also impacts mixed model association statistics. We introduce a family-based association statistic (LT-Fam) that is robust to this problem. Similar to LTMLM, LT-Fam is computed from posterior mean liabilities (PML) under a liability threshold model; however, LT-Fam uses published narrow-sense heritability estimates to avoid the problem of biased heritability estimation, enabling correct calibration. In simulations with family-biased case-control ascertainment, LT-Fam was correctly calibrated (average χ2 = 1.00-1.02 for null SNPs), whereas the Armitage trend test (ATT), standard mixed model association (MLM), and case-control retrospective association test (CARAT) were mis-calibrated (e.g., average χ2 = 0.50-1.22 for MLM, 0.89-2.65 for CARAT). LT-Fam also attained higher power than other methods in some settings. In 1,259 type 2 diabetes-affected case subjects and 5,765 control subjects from the CARe cohort, downsampled to induce family-biased ascertainment, LT-Fam was correctly calibrated whereas ATT, MLM, and CARAT were again mis-calibrated. Our results highlight the importance of modeling family sampling bias in case-control datasets with related samples.


Asunto(s)
Familia , Estudios de Asociación Genética/métodos , Modelos Genéticos , Sesgo , Calibración , Diabetes Mellitus Tipo 2/genética , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Estudios Retrospectivos
5.
Genome Res ; 26(7): 863-73, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27197206

RESUMEN

The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Alelos , Cromosomas Humanos/genética , Variación Genética , Genética Médica , Humanos , Fenotipo , Crecimiento Demográfico , Población Blanca/genética
6.
Am J Hum Genet ; 96(5): 720-30, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25892111

RESUMEN

We introduce a liability-threshold mixed linear model (LTMLM) association statistic for case-control studies and show that it has a well-controlled false-positive rate and more power than existing mixed-model methods for diseases with low prevalence. Existing mixed-model methods suffer a loss in power under case-control ascertainment, but no solution has been proposed. Here, we solve this problem by using a χ(2) score statistic computed from posterior mean liabilities (PMLs) under the liability-threshold model. Each individual's PML is conditional not only on that individual's case-control status but also on every individual's case-control status and the genetic relationship matrix (GRM) obtained from the data. The PMLs are estimated with a multivariate Gibbs sampler; the liability-scale phenotypic covariance matrix is based on the GRM, and a heritability parameter is estimated via Haseman-Elston regression on case-control phenotypes and then transformed to the liability scale. In simulations of unrelated individuals, the LTMLM statistic was correctly calibrated and achieved higher power than existing mixed-model methods for diseases with low prevalence, and the magnitude of the improvement depended on sample size and severity of case-control ascertainment. In a Wellcome Trust Case Control Consortium 2 multiple sclerosis dataset with >10,000 samples, LTMLM was correctly calibrated and attained a 4.3% improvement (p = 0.005) in χ(2) statistics over existing mixed-model methods at 75 known associated SNPs, consistent with simulations. Larger increases in power are expected at larger sample sizes. In conclusion, case-control studies of diseases with low prevalence can achieve power higher than that in existing mixed-model methods.


Asunto(s)
Estudios de Asociación Genética , Modelos Genéticos , Modelos Teóricos , Estudios de Casos y Controles , Mapeo Cromosómico , Simulación por Computador , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Fenotipo , Polimorfismo de Nucleótido Simple , Tamaño de la Muestra
7.
Genome Res ; 25(7): 927-36, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25953952

RESUMEN

Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.


Asunto(s)
Impresión Genómica , Genómica , Adulto , Alelos , Análisis por Conglomerados , Metilación de ADN , Bases de Datos de Ácidos Nucleicos , Femenino , Regulación de la Expresión Génica , Variación Genética , Genotipo , Humanos , Masculino , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Factores Sexuales
8.
Bioinformatics ; 31(15): 2497-504, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25819081

RESUMEN

MOTIVATION: RNA sequencing enables allele-specific expression (ASE) studies that complement standard genotype expression studies for common variants and, importantly, also allow measuring the regulatory impact of rare variants. The Genotype-Tissue Expression (GTEx) project is collecting RNA-seq data on multiple tissues of a same set of individuals and novel methods are required for the analysis of these data. RESULTS: We present a statistical method to compare different patterns of ASE across tissues and to classify genetic variants according to their impact on the tissue-wide expression profile. We focus on strong ASE effects that we are expecting to see for protein-truncating variants, but our method can also be adjusted for other types of ASE effects. We illustrate the method with a real data example on a tissue-wide expression profile of a variant causal for lipoid proteinosis, and with a simulation study to assess our method more generally.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteinosis Lipoidea de Urbach y Wiethe/metabolismo , Polimorfismo de Nucleótido Simple/genética , ARN/análisis , Alelos , Proteínas de la Matriz Extracelular/genética , Humanos , Proteinosis Lipoidea de Urbach y Wiethe/genética , Especificidad de Órganos , Isoformas de Proteínas , ARN/genética
9.
Nat Rev Genet ; 11(7): 459-63, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20548291

RESUMEN

Genome-wide association (GWA) studies are an effective approach for identifying genetic variants associated with disease risk. GWA studies can be confounded by population stratification--systematic ancestry differences between cases and controls--which has previously been addressed by methods that infer genetic ancestry. Those methods perform well in data sets in which population structure is the only kind of structure present but are inadequate in data sets that also contain family structure or cryptic relatedness. Here, we review recent progress on methods that correct for stratification while accounting for these additional complexities.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Modelos Genéticos , Simulación por Computador , Humanos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA