Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677599

RESUMEN

In this study, we determined the enthalpies of vaporisation for a suitable set of molecular and ionic liquids using modern techniques for vapour pressure measurements, such as the quartz crystal microbalance, thermogravimetric analysis (TGA), and gas chromatographic methods. This enabled us to measure reasonable vapour pressures, avoiding the problem of the decomposition of the ionic liquids at high temperatures. The enthalpies of vaporisation could be further analysed by applying the well-known "group contribution" methods for molecular liquids and the "centerpiece" method for ionic liquids. This combined approach allowed for the dissection of the enthalpies of vaporisation into different types of molecular interaction, including hydrogen bonding and the dispersion interaction in the liquid phase, without knowing the existing species in both the liquid and gas phases.

2.
Chemistry ; 28(46): e202200949, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35785500

RESUMEN

We show that the carboxyl-functionalized ionic liquid 1-(carboxymethyl)pyridinium bis(trifluoromethylsulfonyl)imide [HOOC-CH2 -py][NTf2 ] exhibits three types of hydrogen bonding: the expected single hydrogen bonds between cation and anion, and, surprisingly, single and double hydrogen bonds between the cations, despite the repulsive Coulomb forces between the ions of like charge. Combining X-ray crystallography, differential scanning calorimetry, IR spectroscopy, thermodynamic methods and DFT calculations allows the analysis and characterization of all types of hydrogen bonding present in the solid, liquid and gaseous states of the ionic liquid (IL). We find doubly hydrogen bonded cationic dimers (c+ =c+ ) in the crystalline phase. With increasing temperature, this binding motif opens in the liquid and is replaced by (c+ -c+ -a- species, with a remaining single cationic hydrogen bond and an additional hydrogen bond between cation and anion. We provide clear evidence that the IL evaporates as hydrogen-bonded ion pairs (c+ -a- ) into the gas phase. The measured transition enthalpies allow the noncovalent interactions to be dissected and the hydrogen bond strength between ions of like charge to be determined.

3.
Inorg Chem ; 61(28): 10743-10755, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35797430

RESUMEN

Volatile metal ß-diketonates are of interest from both practical and theoretical perspectives (manufacturing of film materials, catalysis, and the nature of metal-ligand bonding). Knowledge of their reliable thermochemical properties is essential for effective applications. However, there is an unacceptable scattering of the available data on the enthalpies of formation. In this work, we proposed "in vitro" and "in vivo" diagnostic tools to verify the available enthalpies of formation in both the crystalline and gaseous states for metal tris-ß-diketonates. The "in vitro" procedure involved high-level quantum-chemical calculations and was applied to define a consistent data set on the enthalpies of formation for iron(III) ß-diketonates. This data set has provided the basis for "in vivo" structure-property-based diagnostics to evaluate the robustness of the thermochemical data for ß-diketonate tris-complexes with metals other than iron.


Asunto(s)
Compuestos Férricos , Metales , Hierro , Ligandos , Compuestos Orgánicos , Termodinámica
4.
Molecules ; 27(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35408720

RESUMEN

Ionic liquids (ILs) are recognized as an environmentally friendly alternative to replacing volatile molecular solvents. Knowledge of vaporization thermodynamics is crucial for practical applications. The vaporization thermodynamics of five ionic liquids containing a pyridinium cation and the [NTf2] anion were studied using a quartz crystal microbalance. Vapor pressure-temperature dependences were used to derive the enthalpies of vaporization of these ionic liquids. Vaporization enthalpies of the pyridinium-based ionic liquids available in the literature were collected and uniformly adjusted to the reference temperature T = 298.15 K. The consistent sets of evaluated vaporization enthalpies were used to develop the "centerpiece"-based group-additivity method for predicting enthalpies of vaporization of ionic compounds. The general transferability of the contributions to the enthalpy of vaporization from the molecular liquids to the ionic liquids was established. A small, but not negligible correction term was supposed to reconcile the estimated results with the experiment. The corrected "centerpiece" approach was recommended to predict the vaporization enthalpies of ILs.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Temperatura , Termodinámica , Presión de Vapor , Volatilización
5.
Chemphyschem ; 22(18): 1850-1856, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34241946

RESUMEN

The paradigm of supramolecular chemistry relies on the delicate balance of noncovalent forces. Here we present a systematic approach for controlling the structural versatility of halide salts by the nature of hydrogen bonding interactions. We synthesized halide salts with hydroxy-functionalized pyridinium cations [HOCn Py]+ (n=2, 3, 4) and chloride, bromide and iodide anions, which are typically used as precursor material for synthesizing ionic liquids by anion metathesis reaction. The X-ray structures of these omnium halides show two types of hydrogen bonding: 'intra-ionic' H-bonds, wherein the anion interacts with the hydroxy group and the positively charged ring at the same cation, and 'inter-ionic' H-bonds, wherein the anion also interacts with the hydroxy group and the ring system but of different cations. We show that hydrogen bonding is controllable by the length of the hydroxyalkyl chain and the interaction strength of the anion. Some molten halide salts exhibit a third type of hydrogen bonding. IR spectra reveal elusive H-bonds between the OH groups of cations, showing interaction between ions of like charge. They are formed despite the repulsive interaction between the like-charged ions and compete with the favored cation-anion H-bonds. All types of H-bonding are analyzed by quantum chemical methods and the natural bond orbital approach, emphasizing the importance of charge transfer in these interactions. For simple omnium salts, we evidenced three distinct types of hydrogen bonds: Three in one!

6.
Phys Chem Chem Phys ; 23(12): 7398-7406, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33876099

RESUMEN

Ionic liquids are described by a delicate balance of Coulomb interaction, hydrogen bonding and dispersion forces. Dissecting the different types of interactions from thermodynamic properties is still a challenge. Here, we show that comparison of vaporization enthalpies of tetra-alkyl-ammonium ionic liquids with bis(trifluoromethylsulfonyl)imide [NTf2]- anions and the related molecular liquids, trialkylamines, allows for determining dispersion interactions in the gas phase ion-pairs. For this purpose, we measured vapor pressures and vaporization enthalpies of these ionic and molecular liquids by using a quartz-crystal microbalance. For supporting these data, we determined the vaporization enthalpies additionally from experimental activity coefficients at infinite dilution. Characteristic alkyl chain length dependences of the vaporization enthalpies have been established and were used for quantifying the dispersion forces in the gas phase species. The dissected dispersion contributions suggest that the alkyl chains do not show star-like topologies but embrace the anion maximizing the dispersion interactions. For the longest alkyl chains with eight carbon atoms, the dispersion interaction is as strong as two and a half hydrogen bonds. The proportion of dispersion in the gas phase species depending on the number of methylene groups in the ammonium cations is strongly supported by quantum chemical calculations.

7.
Phys Chem Chem Phys ; 22(5): 2763-2774, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31951236

RESUMEN

We provide comprehensive understanding of "like-likes-like" charge attraction in hydroxy-functionalized ionic liquids (ILs) by means of infrared spectroscopy (IR), quantum chemistry and differential scanning calorimetry (DSC). We show that hydrogen bonding between cation and cation (c-c) is possible despite the repulsive forces between ions of like charge. Already at room temperature, the (c-c) hydrogen bonds can compete with the regular Coulomb-enhanced hydrogen bonds between cation and anion (c-a). For a large set of well-selected ILs, we show that "like-charge attraction" between the OH-functionalized cations is controllable by the polarizability of the cation, the interaction strength of the anion and the length of the hydroxyalkyl chain. In particular, we clarify whether tethering the OH group away from the positive charge center of the cationic ring with longer hydroxyalkyl chains compensates for unfavourable cation/anion combinations with respect to (c-c) cluster formation. For that purpose, we synthesized and characterized twelve ionic liquids including the differently polarizable cations, 1-(n-hydroxyalkyl)-1-methylpiperidinium [HOCnMPip]+ and 1-(n-hydroxyalkyl)-pyridinium [HOCnPy]+, as well as the weakly and strongly interacting anions, bis(trifluoromethanesulfonyl)imide [NTf2]- and methanesulfonate [OMs]-, respectively. On top, we varied the hydroxyalkyl chain length (HOCn) (n = 2-5). We systematically show how these three molecular ion parameters affect like-charge attraction. The use of polarizable cations, weakly interacting anions, and long alkyl chain tethers results in (c-c) clustering already at room temperature. Kinetic trapping is not a prerequisite for the existence of (c-c) cluster species in ILs. Moreover, we demonstrate that micro structuring affects macroscopic behavior of this type of ILs. We observed that substantial (c-c) interaction prevents ILs from crystallizing. Instead, these ILs supercool and finally form a glass.

8.
Artículo en Inglés | MEDLINE | ID: mdl-34658454

RESUMEN

Heat capacities of the antiviral drug rimantadine hydrochloride in the crystalline state were measured by adiabatic calorimetry and differential scanning calorimetry in the temperature range from (7 to 453) K. A broad low-enthalpy solid-state phase anomaly was detected between (170 and 250) K. Thermodynamic functions for crystalline rimantadine hydrochloride were derived. Decomposition of the studied compound was probed by the Knudsen effusion method and thermogravimetry with the support of quantum chemical calculations. The enthalpy of decomposition of rimantadine hydrochloride into the corresponding amine and hydrogen chloride was estimated from those data. The thermodynamic functions of the corresponding amine in the ideal gaseous state, including enthalpy of formation, were obtained using statistical thermodynamics with the necessary molecular parameters computed using quantum chemical methods. The enthalpy of formation of crystalline rimantadine hydrochloride was estimated.

9.
Phys Chem Chem Phys ; 21(36): 20308-20314, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31495864

RESUMEN

The enthalpy of vaporization is mainly the amount of the energy needed for transferring quantities from the liquid into the gas phase. It simply describes the energy required to overcome the interaction energy between quantities if those evaporate as monomers as is the case for molecular liquids. The situation for ionic liquids (ILs) is more complex. We do not know the delicate composition of different types of interaction, neither for the liquid nor for the gas phase. Additionally, we have to consider that ILs evaporate as ion pairs which carry substantial interaction energy of all kind into the vapor phase. In this study, we measured the vaporization enthalpies of well-selected hydroxyl-functionalized and non-hydroxyfunctionalized ILs. In particular, we focussed on the case of hydroxyl-functionalized ILs providing possible hydrogen bonding between cation and anion in the liquid as well as in the gas phase. With infrared spectroscopy, we showed that all the hydroxyl groups are involved in hydrogen bonding in the liquid state of the ILs. However, molecular dynamics simulations showed that the evaporating ion pairs also include this hydrogen bond. A detailed analysis of the potential energies for all IL constituents showed that the hydrogen bond hinders favourable interaction between the polarizable ring of the cations and the anions leading to higher vaporization enthalpies for the hydroxyl-functionalized ILs.

10.
Angew Chem Int Ed Engl ; 58(25): 8589-8592, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31059187

RESUMEN

The quantification of hydrogen bonding and dispersion energies from vaporization enthalpies is a great challenge. Dissecting interaction energies is particularly difficult for ionic liquids (ILs), for which the composition of the different types of interactions is known neither for the liquid nor for the gas phase. In this study, we demonstrate the existence of ion pairs in the gas phase and dissect the interaction energies exclusively from measured vaporization enthalpies of different alkylated protic ILs (PILs) and aprotic ILs (AILs) and the molecular analogues of their cations. We demonstrate that the evaporated ion pairs are characterized by H-bond-enhanced Coulomb interaction. The overall interaction energy for the ILs in the bulk phase is composed of Coulomb interaction (76 kJ mol-1 ), hydrogen bonding (38 kJ mol-1 ), and minor dispersion interaction (10 kJ mol-1 ). Thus, hydrogen bonding prominently contributes to the overall interaction energy of PILs, which is reflected in the properties of this class of liquids.

11.
Chemphyschem ; 19(5): 619-630, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29178473

RESUMEN

Structure-property analyses of thermodynamic properties in chemical families of R-substituted benzamides, R-substituted benzoic acids, as well as R-substituted benzenes have been performed. The general linear interrelations for the vaporization enthalpies and the gas-phase enthalpies of formation between the chemical families under study have been established. These linear correlations provide a simple method for prediction of thermodynamic properties for benzenes with various combination of R-group substituents on the benzene ring. In addition, the robust structure-property correlations revealed in this study can serve for the establishment of the internal consistency of experimental results available for each chemical series.

12.
Chemphyschem ; 18(10): 1242-1246, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28272797

RESUMEN

Key properties for the use of ionic liquids as electrolytes in batteries are low viscosities, low vapor pressure and high vaporization enthalpies. Whereas the measurement of transport properties is well established, the determination of vaporization enthalpies of these extremely low volatile compounds is still a challenge. At a first glance both properties seem to describe different thermophysical phenomena. However, eighty years ago Eyring suggested a theory which related viscosities and vaporization enthalpies to each other. The model is based on Eyring's theory of absolute reaction rates. Recent attempts to apply Eyring's theory to ionic liquids failed. The motivation of our study is to show that Eyring's theory works, if the assumptions specific for ionic liquids are fulfilled. For that purpose we measured the viscosities of three well selected protic ionic liquids (PILs) at different temperatures. The temperature dependences of viscosities were approximated by the Vogel-Fulcher-Tamann (VFT) relation and extrapolated to the high-temperature regime up to 600 K. Then the VFT-data could be fitted to the Eyring-model. The values of vaporization enthalpies for the three selected PILs predicted by the Eyring model have been very close to the experimental values measured by well-established techniques. We conclude that the Eyring theory can be successfully applied to the chosen set of PILs, if the assumption that ionic pairs of the viscous flow in the liquid and the ionic pairs in the gas phase are similar is fulfilled. It was also noticed that proper transfer of energies can be only derived if the viscosities and the vaporization energies are known for temperatures close to the liquid-gas transition temperature. The idea to correlate easy measurable viscosities of ionic liquids with their vaporization enthalpies opens a new way for a reliable assessment of these thermodynamic properties for a broad range of ionic liquids.

13.
Angew Chem Int Ed Engl ; 55(38): 11682-6, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27504994

RESUMEN

It is well known that gas-phase experiments and computational methods point to the dominance of dispersion forces in the molecular association of hydrocarbons. Estimates or even quantification of these weak forces are complicated due to solvent effects in solution. The dissection of interaction energies and quantification of dispersion interactions is particularly challenging for polar systems such as ionic liquids (ILs) which are characterized by a subtle balance between Coulomb interactions, hydrogen bonding, and dispersion forces. Here, we have used vaporization enthalpies, far-infrared spectroscopy, and dispersion-corrected calculations to dissect the interaction energies between cations and anions in aprotic (AILs), and protic (PILs) ionic liquids. It was found that the higher total interaction energy in PILs results from the strong and directional hydrogen bonds between cation and anion, whereas the larger vaporization enthalpies of AILs clearly arise from increasing dispersion forces between ion pairs.

14.
Chemphyschem ; 16(13): 2890-2898, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26220667

RESUMEN

New measurements of vaporization enthalpies for 15 1:1 ionic liquids are performed by using a quartz-crystal microbalance. Collection and analysis of 33 available crystal structures of organic salts, which comprise 13 different cations and 12 anions, is performed. Their dissociation lattice enthalpies are calculated by a combination of experimental and quantum chemical quantities and are divided into the relaxation and Coulomb components to give an insight into elusive short-range interaction enthalpies. An empirical equation is developed, based on interaction-specific Hirshfeld surfaces and solvation enthalpies, which enables the estimation of the lattice enthalpy by using only the crystal-structure data.

15.
J Phys Chem A ; 119(37): 9680-91, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26317826

RESUMEN

The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K.


Asunto(s)
Adenina/química , Benchmarking , Citosina/química , Modelos Teóricos , Teoría Cuántica , Simulación por Computador , Estructura Molecular , Termodinámica
16.
Chemphyschem ; 13(7): 1868-76, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22298353

RESUMEN

Vaporization enthalpies for a series of ionic liquids (ILs) with the common cation 1-ethyl-3-methylimidazolium [C(2)mim] and different counter anions are determined using a quartz crystal microbalance method. Dependences of vaporization enthalpies on physicochemical parameters specific for cation and anion interactions are revealed. A linear relation between enthalpies of vaporization and the intermolecular vibrational frequencies is observed and suggested for calculation of unknown ILs. A simple group-contribution method is developed for prediction of vaporization enthalpies of alkyl imidazolium-based ILs.

17.
J Phys Chem A ; 116(18): 4639-45, 2012 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-22506924

RESUMEN

This paper reports an experimental and computational thermochemical study on 2-thiobarbituric acid (2-thioxodihydropyrimidine-4,6(1H,5H)-dione), [CAS 504-17-6]. The value of the standard (p(0) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by bomb combustion calorimetry, using a rotatory bomb, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(396.8 ± 0.9) kJ·mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated N(2) stream and a value of the enthalpy of sublimation at T = 298.15 K was derived as (118.3 ± 2.2) kJ·mol(-1). From these results a value of -(278.5 ± 2.4) kJ·mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 and G4 levels were performed, and a study of the molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in very good agreement with the experimental value.

18.
Chemphyschem ; 12(18): 3609-13, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22012865

RESUMEN

Vaporization enthalpies of a series of ten 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquids (ILs) [C(n) mim][NTf(2) ] with alkyl chain lengths of n=2, 3, 4, 6, 8, 10, 12, 14, 16, and 18 are determined by using a recently developed quartz crystal microbalance method. Due to the high sensitivity of the microbalance vapor studies can be extended to temperatures 60-100 K lower than those available with other methods. The results reveal a remarkably linear dependence of the vaporization enthalpies on the chain length at the reference temperature of 298 K.

19.
Phys Chem Chem Phys ; 13(28): 12708-11, 2011 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-21695350

RESUMEN

Activity coefficients at infinite dilution of some common solvents in a protic ionic liquid ethylammonium nitrate have been measured using well established gas-chromatography-method. This method was possible to apply due to extremely low vapour pressure of ethylammonium nitrate at temperatures below 100 °C. Activity coefficients and separation factors were compared with those for aprotic ionic liquids. A new window for intensive accumulation of thermodynamic properties of protic ionic liquids has been opened.

20.
Phys Chem Chem Phys ; 13(31): 14064-75, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21666914

RESUMEN

Potential applications of ionic liquids depend on the properties of this class of liquid material. To a large extent the structure and properties of these Coulomb systems are determined by the intermolecular interactions among anions and cations. In particular the subtle balance between Coulomb forces, hydrogen bonds and dispersion forces is of great importance for the understanding of ionic liquids. The purpose of the present paper is to answer three questions: Do hydrogen bonds exist in these Coulomb fluids? To what extent do hydrogen bonds contribute to the overall interaction between anions and cations? And finally, are hydrogen bonds important for the physical properties of ionic liquids? All these questions are addressed by using a suitable combination of experimental and theoretical methods including newly synthesized imidazolium-based ionic liquids, far infrared spectroscopy, terahertz spectroscopy, DFT calculations, differential scanning calorimetry (DSC), viscometry and quartz-crystal-microbalance measurements. The key statement is that although ionic liquids consist solely of anions and cations and Coulomb forces are the dominating interaction, local and directional interaction such as hydrogen bonding has significant influence on the structure and properties of ionic liquids. This is demonstrated for the case of melting points, viscosities and enthalpies of vaporization. As a consequence, a variety of important properties can be tuned towards a larger working temperature range, finally expanding the range of potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA