Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Meteorit Planet Sci ; 55(11): 2341-2359, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33510569

RESUMEN

The Hamburg meteorite fell on January 16, 2018, near Hamburg, Michigan, after a fireball event widely observed in the U.S. Midwest and in Ontario, Canada. Several fragments fell onto frozen surfaces of lakes and, thanks to weather radar data, were recovered days after the fall. The studied rock fragments show no or little signs of terrestrial weathering. Here, we present the initial results from an international consortium study to describe the fall, characterize the meteorite, and probe the collision history of Hamburg. About 1 kg of recovered meteorites was initially reported. Petrology, mineral chemistry, trace element and organic chemistry, and O and Cr isotopic compositions are characteristic of H4 chondrites. Cosmic ray exposure ages based on cosmogenic 3He, 21Ne, and 38Ar are ~12 Ma, and roughly agree with each other. Noble gas data as well as the cosmogenic 10Be concentration point to a small 40-60 cm diameter meteoroid. An 40Ar-39Ar age of 4532 ± 24 Ma indicates no major impact event occurring later in its evolutionary history, consistent with data of other H4 chondrites. Microanalyses of phosphates with LA-ICPMS give an average Pb-Pb age of 4549 ± 36 Ma. This is in good agreement with the average SIMS Pb-Pb phosphate age of 4535.3 ± 9.5 Ma and U-Pb Concordia age of 4535 ± 10 Ma. The weighted average age of 4541.6 ± 9.5 Ma reflects the metamorphic phosphate crystallization age after parent body formation in the early solar system.

2.
J Am Chem Soc ; 141(8): 3682-3690, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30701964

RESUMEN

In the past three years, machine learning (ML) in combination with density functional theory (DFT) has enabled computational screening of compounds with the goal of accelerated materials discovery. Unfortunately, DFT+ML has, until now, either relied on knowledge of the atomic positions at DFT energy minima, which are a priori unknown, or been limited to chemical spaces of modest size. Here we report a strategy that we term learning-in-templates (LiT), wherein we first define a series of space group and stoichiometry templates corresponding to hypothesized compounds and, orthogonally, we allow any list of atoms to take on any template. The LiT approach is deployed in combination with previously established position-dependent representations and performs best with the representations that rely least on the atomic positions. Since the positions of the atoms in templates are known and do not change, LiT enables us to infer the properties of interest directly; additionally, LiT allows working with increased chemical spaces, since the same elements can take on a large number of templates. Only by using LiT were we able to span 5 × 106 double-perovskite compounds and achieve an acceleration factor of 700 compared to brute-force DFT, allowing us to predict never-before-screened compounds. Our findings motivated us to synthesize a new BaCu yTa(1- y)S3 perovskite, which we show using an electron probe microanalyzer has a 5:3 molar ratio of Cu to Ta and, using powder X-ray diffraction (XRD) analysis combined with a DFT-based XRD simulation and fitting, indicate a new phase having an I4/ m space group.

3.
Nat Commun ; 13(1): 4218, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864119

RESUMEN

Continental arc magmas supply the ore-forming element budget of most globally important porphyry-type ore deposits. However, the processes enabling certain arc segments to preferentially generate giant porphyry deposits remain highly debated. Here we evaluate the large-scale covariation of key ore-forming constituents in this setting by studying silicate melt inclusions in volcanic rocks from a fertile-to-barren segment of the Andean Southern Volcanic Zone (33-40 °S). We show that the north-to-south, fertile-to-barren gradient is characterized by a northward increase in S and Cl concentrations and a simultaneous decrease in Cu. Consequently, we suggest that the concentration of S and Cl rather than the concentration of ore metals regulates magmatic-hydrothermal ore fertility, and that the loss of volatiles prior to arrival in the upper crust impacts ore-forming potential more than magmatic sulfide saturation-related ore metal scavenging.


Asunto(s)
Cloro , Azufre , Fertilidad , Halógenos , Metales
4.
J Phys Chem Lett ; 11(11): 4326-4330, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32393037

RESUMEN

Low-dimensional copper halides with high luminance have attracted increasing interest as heavy-metal-free light emitters. However, the optical mechanisms underpinning their excellent luminescence remain underexplored. Here, we report multiple self-trapped emissions in Cs3Cu2I5. Power-dependent photoluminescence spectra reveal the appearance of multiple self-trapped emission peaks with increasing excitation power, and this emission behavior is explored across a temperature range of 80-420 K. The zero-dimensional structure and soft crystal lattice contribute to the multiple self-trapped emissions in Cs3Cu2I5: this explains the origin of the broad emission and the luminescence mechanism in Cs3Cu2I5 and will assist in improving our understanding of the optical properties of other metal halides. We incorporate the Cs3Cu2I5 in light-emitting diodes that achieve a peak luminance of 140 cd/m2 and an external quantum efficiency of 0.27%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA