Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 32: 547-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24655298

RESUMEN

Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology.


Asunto(s)
Inmunidad Innata/fisiología , Biología de Sistemas , Animales , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/etiología , Humanos , Biología de Sistemas/métodos , Vacunas/inmunología
2.
Nat Immunol ; 10(4): 437-43, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19270711

RESUMEN

The innate immune system is like a double-edged sword: it is absolutely required for host defense against infection, but when uncontrolled, it can trigger a plethora of inflammatory diseases. Here we use systems-biology approaches to predict and confirm the existence of a gene-regulatory network involving dynamic interaction among the transcription factors NF-kappaB, C/EBPdelta and ATF3 that controls inflammatory responses. We mathematically modeled transcriptional regulation of the genes encoding interleukin 6 and C/EBPdelta and experimentally confirmed the prediction that the combination of an initiator (NF-kappaB), an amplifier (C/EBPdelta) and an attenuator (ATF3) forms a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4-induced signals. Our results suggest a mechanism that enables the innate immune system to detect the duration of infection and to respond appropriately.


Asunto(s)
Factor de Transcripción Activador 3/inmunología , Células de la Médula Ósea/inmunología , Proteína delta de Unión al Potenciador CCAAT/inmunología , Macrófagos/inmunología , Biología de Sistemas , Receptor Toll-Like 4/inmunología , Factor de Transcripción Activador 3/fisiología , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/fisiología , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/fisiología , Células Cultivadas , Infecciones por Escherichia coli/inmunología , Redes Reguladoras de Genes , Inmunidad Innata , Interleucina-6/inmunología , Interleucina-6/fisiología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Genéticos , FN-kappa B/inmunología , FN-kappa B/fisiología , Receptor Toll-Like 4/fisiología
3.
Proc Natl Acad Sci U S A ; 114(9): 2425-2430, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193898

RESUMEN

RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Anticuerpos Antiprotozoarios/biosíntesis , Inmunidad Innata/efectos de los fármacos , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Proteínas Protozoarias/administración & dosificación , Vacunas Sintéticas/administración & dosificación , Adenoviridae/genética , Adenoviridae/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/inmunología , Humanos , Inmunización Secundaria/métodos , Inmunogenicidad Vacunal , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vacunación/métodos
5.
PLoS Med ; 16(4): e1002781, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30990820

RESUMEN

BACKGROUND: A nonsputum blood test capable of predicting progression of healthy individuals to active tuberculosis (TB) before clinical symptoms manifest would allow targeted treatment to curb transmission. We aimed to develop a proteomic biomarker of risk of TB progression for ultimate translation into a point-of-care diagnostic. METHODS AND FINDINGS: Proteomic TB risk signatures were discovered in a longitudinal cohort of 6,363 Mycobacterium tuberculosis-infected, HIV-negative South African adolescents aged 12-18 years (68% female) who participated in the Adolescent Cohort Study (ACS) between July 6, 2005 and April 23, 2007, through either active (every 6 months) or passive follow-up over 2 years. Forty-six individuals developed microbiologically confirmed TB disease within 2 years of follow-up and were selected as progressors; 106 nonprogressors, who remained healthy, were matched to progressors. Over 3,000 human proteins were quantified in plasma with a highly multiplexed proteomic assay (SOMAscan). Three hundred sixty-one proteins of differential abundance between progressors and nonprogressors were identified. A 5-protein signature, TB Risk Model 5 (TRM5), was discovered in the ACS training set and verified by blind prediction in the ACS test set. Poor performance on samples 13-24 months before TB diagnosis motivated discovery of a second 3-protein signature, 3-protein pair-ratio (3PR) developed using an orthogonal strategy on the full ACS subcohort. Prognostic performance of both signatures was validated in an independent cohort of 1,948 HIV-negative household TB contacts from The Gambia (aged 15-60 years, 66% female), longitudinally followed up for 2 years between March 5, 2007 and October 21, 2010, sampled at baseline, month 6, and month 18. Amongst these contacts, 34 individuals progressed to microbiologically confirmed TB disease and were included as progressors, and 115 nonprogressors were included as controls. Prognostic performance of the TRM5 signature in the ACS training set was excellent within 6 months of TB diagnosis (area under the receiver operating characteristic curve [AUC] 0.96 [95% confidence interval, 0.93-0.99]) and 6-12 months (AUC 0.76 [0.65-0.87]) before TB diagnosis. TRM5 validated with an AUC of 0.66 (0.56-0.75) within 1 year of TB diagnosis in the Gambian validation cohort. The 3PR signature yielded an AUC of 0.89 (0.84-0.95) within 6 months of TB diagnosis and 0.72 (0.64-0.81) 7-12 months before TB diagnosis in the entire South African discovery cohort and validated with an AUC of 0.65 (0.55-0.75) within 1 year of TB diagnosis in the Gambian validation cohort. Signature validation may have been limited by a systematic shift in signal magnitudes generated by differences between the validation assay when compared to the discovery assay. Further validation, especially in cohorts from non-African countries, is necessary to determine how generalizable signature performance is. CONCLUSIONS: Both proteomic TB risk signatures predicted progression to incident TB within a year of diagnosis. To our knowledge, these are the first validated prognostic proteomic signatures. Neither meet the minimum criteria as defined in the WHO Target Product Profile for a progression test. More work is required to develop such a test for practical identification of individuals for investigation of incipient, subclinical, or active TB disease for appropriate treatment and care.


Asunto(s)
Biomarcadores/sangre , Proteoma/análisis , Tuberculosis/diagnóstico , Adolescente , Biomarcadores/análisis , Biomarcadores/metabolismo , Niño , Estudios de Cohortes , Pruebas Diagnósticas de Rutina/métodos , Progresión de la Enfermedad , Femenino , Humanos , Estudios Longitudinales , Masculino , Pruebas en el Punto de Atención , Pronóstico , Estudios Prospectivos , Proteoma/metabolismo , Proteómica , Tuberculosis/sangre , Tuberculosis/patología
6.
PLoS Pathog ; 13(11): e1006687, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29145483

RESUMEN

Our understanding of mechanisms underlying progression from Mycobacterium tuberculosis infection to pulmonary tuberculosis disease in humans remains limited. To define such mechanisms, we followed M. tuberculosis-infected adolescents longitudinally. Blood samples from forty-four adolescents who ultimately developed tuberculosis disease ("progressors") were compared with those from 106 matched controls, who remained healthy during two years of follow up. We performed longitudinal whole blood transcriptomic analyses by RNA sequencing and plasma proteome analyses using multiplexed slow off-rate modified DNA aptamers. Tuberculosis progression was associated with sequential modulation of immunological processes. Type I/II interferon signalling and complement cascade were elevated 18 months before tuberculosis disease diagnosis, while changes in myeloid inflammation, lymphoid, monocyte and neutrophil gene modules occurred more proximally to tuberculosis disease. Analysis of gene expression in purified T cells also revealed early suppression of Th17 responses in progressors, relative to M. tuberculosis-infected controls. This was confirmed in an independent adult cohort who received BCG re-vaccination; transcript expression of interferon response genes in blood prior to BCG administration was associated with suppression of IL-17 expression by BCG-specific CD4 T cells 3 weeks post-vaccination. Our findings provide a timeline to the different immunological stages of disease progression which comprise sequential inflammatory dynamics and immune alterations that precede disease manifestations and diagnosis of tuberculosis disease. These findings have important implications for developing diagnostics, vaccination and host-directed therapies for tuberculosis. TRIAL REGISTRATION: Clincialtrials.gov, NCT01119521.


Asunto(s)
Mycobacterium tuberculosis , Linfocitos T/inmunología , Tuberculosis/microbiología , Tuberculosis/terapia , Adolescente , Niño , Progresión de la Enfermedad , Humanos , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/terapia , Vacunas/uso terapéutico
7.
Am J Respir Crit Care Med ; 197(9): 1198-1208, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29624071

RESUMEN

Rationale: Contacts of patients with tuberculosis (TB) constitute an important target population for preventive measures because they are at high risk of infection with Mycobacterium tuberculosis and progression to disease.Objectives: We investigated biosignatures with predictive ability for incident TB.Methods: In a case-control study nested within the Grand Challenges 6-74 longitudinal HIV-negative African cohort of exposed household contacts, we employed RNA sequencing, PCR, and the pair ratio algorithm in a training/test set approach. Overall, 79 progressors who developed TB between 3 and 24 months after diagnosis of index case and 328 matched nonprogressors who remained healthy during 24 months of follow-up were investigated.Measurements and Main Results: A four-transcript signature derived from samples in a South African and Gambian training set predicted progression up to two years before onset of disease in blinded test set samples from South Africa, the Gambia, and Ethiopia with little population-associated variability, and it was also validated in an external cohort of South African adolescents with latent M. tuberculosis infection. By contrast, published diagnostic or prognostic TB signatures were predicted in samples from some but not all three countries, indicating site-specific variability. Post hoc meta-analysis identified a single gene pair, C1QC/TRAV27 (complement C1q C-chain / T-cell receptor-α variable gene 27) that would consistently predict TB progression in household contacts from multiple African sites but not in infected adolescents without known recent exposure events.Conclusions: Collectively, we developed a simple whole blood-based PCR test to predict TB in recently exposed household contacts from diverse African populations. This test has potential for implementation in national TB contact investigation programs.

8.
Proc Natl Acad Sci U S A ; 113(7): 1853-8, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26755593

RESUMEN

The dynamics and molecular mechanisms underlying vaccine immunity in early childhood remain poorly understood. Here we applied systems approaches to investigate the innate and adaptive responses to trivalent inactivated influenza vaccine (TIV) and MF59-adjuvanted TIV (ATIV) in 90 14- to 24-mo-old healthy children. MF59 enhanced the magnitude and kinetics of serum antibody titers following vaccination, and induced a greater frequency of vaccine specific, multicytokine-producing CD4(+) T cells. Compared with transcriptional responses to TIV vaccination previously reported in adults, responses to TIV in infants were markedly attenuated, limited to genes regulating antiviral and antigen presentation pathways, and observed only in a subset of vaccinees. In contrast, transcriptional responses to ATIV boost were more homogenous and robust. Interestingly, a day 1 gene signature characteristic of the innate response (antiviral IFN genes, dendritic cell, and monocyte responses) correlated with hemagglutination at day 28. These findings demonstrate that MF59 enhances the magnitude, kinetics, and consistency of the innate and adaptive response to vaccination with the seasonal influenza vaccine during early childhood, and identify potential molecular correlates of antibody responses.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra la Influenza/administración & dosificación , Polisorbatos/administración & dosificación , Escualeno/administración & dosificación , Biología de Sistemas , Anticuerpos Antivirales/biosíntesis , Linfocitos B/inmunología , Humanos , Memoria Inmunológica , Lactante , Vacunas contra la Influenza/inmunología , Transcriptoma
9.
J Infect Dis ; 217(8): 1318-1322, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29325117

RESUMEN

The cynomolgus macaque model of low-dose Mycobacterium tuberculosis infection recapitulates clinical aspects of human tuberculosis pathology, but it is unknown whether the 2 systems are sufficiently similar that host-based signatures of tuberculosis will be predictive across species. By blind prediction, we demonstrate that a subset of genes comprising a human signature for tuberculosis risk is simultaneously predictive in humans and macaques and prospectively discriminates progressor from controller animals 3-6 weeks after infection. Further analysis yielded a 3-gene signature involving PRDX2 that predicts tuberculosis progression in macaques 10 days after challenge, suggesting novel pathways that define protective responses to M. tuberculosis.


Asunto(s)
Macaca fascicularis , Mycobacterium tuberculosis/inmunología , ARN Bacteriano/sangre , Tuberculosis Pulmonar/microbiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Pulmón/patología , Mycobacterium tuberculosis/genética , Tuberculosis Pulmonar/patología
10.
Lancet ; 387(10035): 2312-2322, 2016 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-27017310

RESUMEN

BACKGROUND: Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease might lead to interventions that combat the tuberculosis epidemic. We aimed to assess whether global gene expression measured in whole blood of healthy people allowed identification of prospective signatures of risk of active tuberculosis disease. METHODS: In this prospective cohort study, we followed up healthy, South African adolescents aged 12-18 years from the adolescent cohort study (ACS) who were infected with M tuberculosis for 2 years. We collected blood samples from study participants every 6 months and monitored the adolescents for progression to tuberculosis disease. A prospective signature of risk was derived from whole blood RNA sequencing data by comparing participants who developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex quantitative real-time PCR (qRT-PCR), the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. Participants of the independent cohorts were household contacts of adults with active pulmonary tuberculosis disease. FINDINGS: Between July 6, 2005, and April 23, 2007, we enrolled 6363 participants from the ACS study and 4466 from independent South African and Gambian cohorts. 46 progressors and 107 matched controls were identified in the ACS cohort. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% CI 63·2-68·9) and a specificity of 80·6% (79·2-82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA sequencing and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6-64·3) and a specificity of 82·8% (76·7-86) in the 12 months preceding tuberculosis. INTERPRETATION: The whole blood tuberculosis risk signature prospectively identified people at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. FUNDING: Bill & Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union, and the South African Medical Research Council.


Asunto(s)
Tuberculosis/diagnóstico , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Expresión Génica , Humanos , Persona de Mediana Edad , Mycobacterium tuberculosis/genética , Estudios Prospectivos , ARN Bacteriano/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Medición de Riesgo , Factores de Riesgo , Tuberculosis/sangre , Tuberculosis/genética , Adulto Joven
11.
J Immunol ; 191(8): 3986-9, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24043898

RESUMEN

The NAIP/NLRC4 inflammasomes activate caspase-1 in response to bacterial type III secretion systems (T3SSs). Inadvertent injection of the T3SS rod protein and flagellin into the cytosol is detected through murine NAIP2 and NAIP5/6, respectively. In this study, we identify the agonist for the orphan murine NAIP1 receptor as the T3SS needle protein. NAIP1 is poorly expressed in resting mouse bone marrow-derived macrophages; however, priming with polyinosinic-polycytidylic acid induces it and confers needle protein sensitivity. Further, overexpression of NAIP1 in immortalized bone marrow-derived macrophages by retroviral transduction enabled needle detection. In contrast, peritoneal cavity macrophages basally express NAIP1 and respond to needle protein robustly, independent of priming. Human macrophages are known to express only one NAIP gene, which detects the needle protein, but not rod or flagellin. Thus, murine NAIP1 is functionally analogous to human NAIP.


Asunto(s)
Sistemas de Secreción Bacterianos/inmunología , Células de la Médula Ósea/metabolismo , Macrófagos/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Animales , Caspasa 1/metabolismo , Células Cultivadas , Activación Enzimática , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Inhibidora de la Apoptosis Neuronal/agonistas , Poli I-C/inmunología
12.
Proc Natl Acad Sci U S A ; 109(50): E3503-12, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23151505

RESUMEN

To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.


Asunto(s)
Vacunas contra el SIDA/inmunología , Adenovirus Humanos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el SIDA/genética , Adenovirus Humanos/genética , Adenovirus Humanos/fisiología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Quimiocinas/sangre , Citocinas/sangre , Femenino , Vectores Genéticos , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Humanos , Inmunidad Innata , Mediadores de Inflamación/sangre , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Biología de Sistemas , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Replicación Viral , Vacuna contra la Fiebre Amarilla/inmunología , Adulto Joven
13.
Proc Natl Acad Sci U S A ; 108(28): 11536-41, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21709223

RESUMEN

Precise control of the innate immune response is essential to ensure host defense against infection while avoiding inflammatory disease. Systems-level analyses of Toll-like receptor (TLR)-stimulated macrophages suggested that SHANK-associated RH domain-interacting protein (SHARPIN) might play a role in the TLR pathway. This hypothesis was supported by the observation that macrophages derived from chronic proliferative dermatitis mutation (cpdm) mice, which harbor a spontaneous null mutation in the Sharpin gene, exhibited impaired IL-12 production in response to TLR activation. Systems biology approaches were used to define the SHARPIN-regulated networks. Promoter analysis identified NF-κB and AP-1 as candidate transcription factors downstream of SHARPIN, and network analysis suggested selective attenuation of these pathways. We found that the effects of SHARPIN deficiency on the TLR2-induced transcriptome were strikingly correlated with the effects of the recently described hypomorphic L153P/panr2 point mutation in Ikbkg [NF-κB Essential Modulator (NEMO)], suggesting that SHARPIN and NEMO interact. We confirmed this interaction by co-immunoprecipitation analysis and furthermore found it to be abrogated by panr2. NEMO-dependent signaling was affected by SHARPIN deficiency in a manner similar to the panr2 mutation, including impaired p105 and ERK phosphorylation and p65 nuclear localization. Interestingly, SHARPIN deficiency had no effect on IκBα degradation and on p38 and JNK phosphorylation. Taken together, these results demonstrate that SHARPIN is an essential adaptor downstream of the branch point defined by the panr2 mutation in NEMO.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Cartilla de ADN/genética , Inmunidad Innata/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , FN-kappa B/metabolismo , Mapeo de Interacción de Proteínas , Transducción de Señal , Análisis de Sistemas , Biología de Sistemas , Receptor Toll-Like 2/genética , Factor de Transcripción AP-1/metabolismo
14.
J Clin Invest ; 134(9)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502193

RESUMEN

Chimeric antigen receptor (CAR) designs that incorporate pharmacologic control are desirable; however, designs suitable for clinical translation are needed. We designed a fully human, rapamycin-regulated drug product for targeting CD33+ tumors called dimerizaing agent-regulated immunoreceptor complex (DARIC33). T cell products demonstrated target-specific and rapamycin-dependent cytokine release, transcriptional responses, cytotoxicity, and in vivo antileukemic activity in the presence of as little as 1 nM rapamycin. Rapamycin withdrawal paused DARIC33-stimulated T cell effector functions, which were restored following reexposure to rapamycin, demonstrating reversible effector function control. While rapamycin-regulated DARIC33 T cells were highly sensitive to target antigen, CD34+ stem cell colony-forming capacity was not impacted. We benchmarked DARIC33 potency relative to CD19 CAR T cells to estimate a T cell dose for clinical testing. In addition, we integrated in vitro and preclinical in vivo drug concentration thresholds for off-on state transitions, as well as murine and human rapamycin pharmacokinetics, to estimate a clinically applicable rapamycin dosing schedule. A phase I DARIC33 trial has been initiated (PLAT-08, NCT05105152), with initial evidence of rapamycin-regulated T cell activation and antitumor impact. Our findings provide evidence that the DARIC platform exhibits sensitive regulation and potency needed for clinical application to other important immunotherapy targets.


Asunto(s)
Leucemia Mieloide Aguda , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Sirolimus , Linfocitos T , Animales , Femenino , Humanos , Masculino , Ratones , Inmunoterapia Adoptiva , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Receptores Quiméricos de Antígenos/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Sirolimus/farmacología , Sirolimus/administración & dosificación , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Immunol Rev ; 227(1): 264-82, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19120490

RESUMEN

Systems biology is the comprehensive and quantitative analysis of the interactions between all of the components of biological systems over time. Systems biology involves an iterative cycle, in which emerging biological problems drive the development of new technologies and computational tools. These technologies and tools then open new frontiers that revolutionize biology. Innate immunity is well suited for systems analysis, because the relevant cells can be isolated in various functional states and their interactions can be reconstituted in a biologically meaningful manner. Application of the tools of systems biology to the innate immune system will enable comprehensive analysis of the complex interactions that maintain the difficult balance between host defense and inflammatory disease. In this review, we discuss innate immunity in the context of the systems biology concepts, emergence, robustness, and modularity, and we describe emerging technologies we are applying in our systems-level analyses. These technologies include genomics, proteomics, computational analysis, forward genetics screens, and analyses that link human genetic polymorphisms to disease resistance.


Asunto(s)
Redes Reguladoras de Genes/inmunología , Inmunidad Innata , Biología de Sistemas/métodos , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Animales , Simulación por Computador , Bases de Datos Genéticas/estadística & datos numéricos , Retroalimentación Fisiológica/inmunología , Pruebas Genéticas , Humanos , Inmunidad Innata/genética , Infecciones/inmunología , Macrófagos/metabolismo , Transducción de Señal/inmunología , Biología de Sistemas/instrumentación , Receptores Toll-Like/genética , Estudios de Validación como Asunto
16.
Oncoimmunology ; 11(1): 2029070, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154906

RESUMEN

Although chimeric antigen receptor (CAR) T cells have emerged as highly effective treatments for patients with hematologic malignancies, similar efficacy has not been achieved in the context of solid tumors. There are several reasons for this disparity including a) fewer solid tumor target antigens, b) heterogenous target expression amongst tumor cells, c) poor trafficking of CAR T cells to the solid tumor and d) an immunosuppressive tumor microenvironment (TME). Oncolytic viruses have the potential to change this paradigm by a) directly lysing tumor cells and releasing tumor neoantigens, b) stimulating the local host innate immune response to release cytokines and recruit additional innate and adaptive immune cells, c) carrying virus-encoded transgenes to "re-program" the TME to a pro-inflammatory environment and d) promoting an adaptive immune response to the neoantigens in this newly permissive TME. Here we show that the Tumor-Specific Immuno-Gene (T-SIGn) virus NG-347 which encodes IFNα, MIP1α and CD80 synergizes with anti-EGFR CAR T cells as well as anti-HER-2 CAR T cells to clear A549 human tumor xenografts and their pulmonary metastases at doses which are subtherapeutic when each is used as a sole treatment. We show that NG-347 changes the TME to a pro-inflammatory environment resulting in the recruitment and activation of both CAR T cells and mouse innate immune cells. We also show that the transgenes encoded by the virus are critical as synergy is lost in their absence.


Asunto(s)
Neoplasias Pulmonares , Receptores Quiméricos de Antígenos , Animales , Antígenos de Neoplasias/genética , Xenoinjertos , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias Pulmonares/terapia , Ratones , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Microambiente Tumoral
17.
PLoS One ; 17(12): e0278295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36454773

RESUMEN

Mycobacterium tuberculosis (M.tb) causes tuberculosis (TB) and remains one of the leading causes of mortality due to an infectious pathogen. Host immune responses have been implicated in driving the progression from infection to severe lung disease. We analyzed longitudinal RNA sequencing (RNAseq) data from the whole blood of 74 TB progressors whose samples were grouped into four six-month intervals preceding diagnosis (the GC6-74 study). We additionally analyzed RNAseq data from an independent cohort of 90 TB patients with positron emission tomography-computed tomography (PET-CT) scan results which were used to categorize them into groups with high and low levels of lung damage (the Catalysis TB Biomarker study). These groups were compared to non-TB controls to obtain a complete whole blood transcriptional profile for individuals spanning from early stages of M.tb infection to TB diagnosis. The results revealed a steady increase in the number of genes that were differentially expressed in progressors at time points closer to diagnosis with 278 genes at 13-18 months, 742 at 7-12 months and 5,131 detected 1-6 months before diagnosis and 9,205 detected in TB patients. A total of 2,144 differentially expressed genes were detected when comparing TB patients with high and low levels of lung damage. There was a large overlap in the genes upregulated in progressors 1-6 months before diagnosis (86%) with those in TB patients. A comprehensive pathway analysis revealed a potent activation of neutrophil and platelet mediated defenses including neutrophil and platelet degranulation, and NET formation at both time points. These pathways were also enriched in TB patients with high levels of lung damage compared to those with low. These findings suggest that neutrophils and platelets play a critical role in TB pathogenesis, and provide details of the timing of specific effector mechanisms that may contribute to TB lung pathology.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Ganglionar , Humanos , Neutrófilos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Activación Neutrófila , Mycobacterium tuberculosis/genética
18.
Bioinformatics ; 26(17): 2071-5, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20663846

RESUMEN

MOTIVATION: Histone acetylation (HAc) is associated with open chromatin, and HAc has been shown to facilitate transcription factor (TF) binding in mammalian cells. In the innate immune system context, epigenetic studies strongly implicate HAc in the transcriptional response of activated macrophages. We hypothesized that using data from large-scale sequencing of a HAc chromatin immunoprecipitation assay (ChIP-Seq) would improve the performance of computational prediction of binding locations of TFs mediating the response to a signaling event, namely, macrophage activation. RESULTS: We tested this hypothesis using a multi-evidence approach for predicting binding sites. As a training/test dataset, we used ChIP-Seq-derived TF binding site locations for five TFs in activated murine macrophages. Our model combined TF binding site motif scanning with evidence from sequence-based sources and from HAc ChIP-Seq data, using a weighted sum of thresholded scores. We find that using HAc data significantly improves the performance of motif-based TF binding site prediction. Furthermore, we find that within regions of high HAc, local minima of the HAc ChIP-Seq signal are particularly strongly correlated with TF binding locations. Our model, using motif scanning and HAc local minima, improves the sensitivity for TF binding site prediction by approximately 50% over a model based on motif scanning alone, at a false positive rate cutoff of 0.01. AVAILABILITY: The data and software source code for model training and validation are freely available online at http://magnet.systemsbiology.net/hac.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Activación de Macrófagos , Factores de Transcripción/metabolismo , Acetilación , Animales , Sitios de Unión , Genoma , Histonas/metabolismo , Ratones , Modelos Biológicos , Programas Informáticos
19.
Cell Host Microbe ; 29(1): 68-82.e5, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33142108

RESUMEN

Tuberculosis (TB) is a heterogeneous disease manifesting in a subset of individuals infected with aerosolized Mycobacterium tuberculosis (Mtb). Unlike human TB, murine infection results in uniformly high lung bacterial burdens and poorly organized granulomas. To develop a TB model that more closely resembles human disease, we infected mice with an ultra-low dose (ULD) of between 1-3 founding bacteria, reflecting a physiologic inoculum. ULD-infected mice exhibited highly heterogeneous bacterial burdens, well-circumscribed granulomas that shared features with human granulomas, and prolonged Mtb containment with unilateral pulmonary infection in some mice. We identified blood RNA signatures in mice infected with an ULD or a conventional Mtb dose (50-100 CFU) that correlated with lung bacterial burdens and predicted Mtb infection outcomes across species, including risk of progression to active TB in humans. Overall, these findings highlight the potential of the murine TB model and show that ULD infection recapitulates key features of human TB.


Asunto(s)
Modelos Animales de Enfermedad , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Pulmonar , Animales , Carga Bacteriana , Biomarcadores/sangre , Progresión de la Enfermedad , Femenino , Granuloma/patología , Humanos , Pulmón/microbiología , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/crecimiento & desarrollo , RNA-Seq , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
20.
Front Immunol ; 11: 596173, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33643286

RESUMEN

Pulmonary tuberculosis (PTB) is characterized by lung granulomas, inflammation and tissue destruction. Here we used within-subject peripheral blood gene expression over time to correlate with the within-subject lung metabolic activity, as measured by positron emission tomography (PET) to identify biological processes and pathways underlying overall resolution of lung inflammation. We used next-generation RNA sequencing and [18F]FDG PET-CT data, collected at diagnosis, week 4, and week 24, from 75 successfully cured PTB patients, with the [18F]FDG activity as a surrogate for lung inflammation. Our linear mixed-effects models required that for each individual the slope of the line of [18F]FDG data in the outcome and the slope of the peripheral blood transcript expression data correlate, i.e., the slopes of the outcome and explanatory variables had to be similar. Of 10,295 genes that changed as a function of time, we identified 639 genes whose expression profiles correlated with decreasing [18F]FDG uptake levels in the lungs. Gene enrichment over-representation analysis revealed that numerous biological processes were significantly enriched in the 639 genes, including several well known in TB transcriptomics such as platelet degranulation and response to interferon gamma, thus validating our novel approach. Others not previously associated with TB pathobiology included smooth muscle contraction, a set of pathways related to mitochondrial function and cell death, as well as a set of pathways connecting transcription, translation and vesicle formation. We observed up-regulation in genes associated with B cells, and down-regulation in genes associated with platelet activation. We found 254 transcription factor binding sites to be enriched among the 639 gene promoters. In conclusion, we demonstrated that of the 10,295 gene expression changes in peripheral blood, only a subset of 639 genes correlated with inflammation in the lungs, and the enriched pathways provide a description of the biology of resolution of lung inflammation as detectable in peripheral blood. Surprisingly, resolution of PTB inflammation is positively correlated with smooth muscle contraction and, extending our previous observation on mitochondrial genes, shows the presence of mitochondrial stress. We focused on pathway analysis which can enable therapeutic target discovery and potential modulation of the host response to TB.


Asunto(s)
Biomarcadores , Perfilación de la Expresión Génica , Tomografía de Emisión de Positrones , Transcriptoma , Tuberculosis Pulmonar/diagnóstico por imagen , Tuberculosis Pulmonar/genética , Adolescente , Adulto , Anciano , Sitios de Unión , Ácidos Nucleicos Libres de Células , Biología Computacional/métodos , Femenino , Fluorodesoxiglucosa F18 , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Unión Proteica , Factores de Transcripción , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/tratamiento farmacológico , Flujo de Trabajo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA