Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 134: 90-102, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35317961

RESUMEN

Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.


Asunto(s)
Arabidopsis , Phaeophyceae , Animales , Cigoto , Phaeophyceae/genética , Phaeophyceae/metabolismo , Polaridad Celular , División Celular , Plantas
2.
New Phytol ; 243(5): 1887-1898, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38984686

RESUMEN

The role of maternal tissue in embryogenesis remains enigmatic in many complex organisms. Here, we investigate the contribution of maternal tissue to apical-basal patterning in the kelp embryo. Focussing on Undaria pinnatifida, we studied the effects of detachment from the maternal tissue using microsurgery, staining of cell wall modifications, morphometric measurements, flow cytometry, genotyping and a modified kelp fertilisation protocol synchronising kelp embryogenesis. Detached embryos are rounder and often show aberrant morphologies. When a part of the oogonial cell wall remains attached to the zygote, the apical-basal patterning is rescued. Furthermore, the absence of contact with maternal tissue increases parthenogenesis, highlighting the critical role of maternal signals in the initial stages of development. These results show a key role for the connection to the maternal oogonial cell wall in apical-basal patterning in kelps. This observation is reminiscent of another brown alga, Fucus, where the cell wall directs the cell fate. Our findings suggest a conserved mechanism across phylogenetically distant oogamous lineages, where localised secretion of sulphated F2 fucans mediates the establishment of the apical-basal polarity. In this model, the maternal oogonial cell wall mediates basal cell fate determination by providing an extrinsic patterning cue to the future kelp embryo.


Asunto(s)
Pared Celular , Undaria , Undaria/fisiología , Pared Celular/metabolismo , Tipificación del Cuerpo , Kelp/fisiología , Partenogénesis , Algas Comestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA