Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(11): e26781, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023172

RESUMEN

Attention lapses (ALs) are complete lapses of responsiveness in which performance is briefly but completely disrupted and during which, as opposed to microsleeps, the eyes remain open. Although the phenomenon of ALs has been investigated by behavioural and physiological means, the underlying cause of an AL has largely remained elusive. This study aimed to investigate the underlying physiological substrates of behaviourally identified endogenous ALs during a continuous visuomotor task, primarily to answer the question: Were the ALs during this task due to extreme mind-wandering or mind-blanks? The data from two studies were combined, resulting in data from 40 healthy non-sleep-deprived subjects (20M/20F; mean age 27.1 years, 20-45). Only 17 of the 40 subjects were used in the analysis due to a need for a minimum of two ALs per subject. Subjects performed a random 2-D continuous visuomotor tracking task for 50 and 20 min in Studies 1 and 2, respectively. Tracking performance, eye-video, and functional magnetic resonance imaging (fMRI) were recorded simultaneously. A human expert visually inspected the tracking performance and eye-video recordings to identify and categorise lapses of responsiveness as microsleeps or ALs. Changes in neural activity during 85 ALs (17 subjects) relative to responsive tracking were estimated by whole-brain voxel-wise fMRI and by haemodynamic response (HR) analysis in regions of interest (ROIs) from seven key networks to reveal the neural signature of ALs. Changes in functional connectivity (FC) within and between the key ROIs were also estimated. Networks explored were the default mode network, dorsal attention network, frontoparietal network, sensorimotor network, salience network, visual network, and working memory network. Voxel-wise analysis revealed a significant increase in blood-oxygen-level-dependent activity in the overlapping dorsal anterior cingulate cortex and supplementary motor area region but no significant decreases in activity; the increased activity is considered to represent a recovery-of-responsiveness process following an AL. This increased activity was also seen in the HR of the corresponding ROI. Importantly, HR analysis revealed no trend of increased activity in the posterior cingulate of the default mode network, which has been repeatedly demonstrated to be a strong biomarker of mind-wandering. FC analysis showed decoupling of external attention, which supports the involuntary nature of ALs, in addition to the neural recovery processes. Other findings were a decrease in HR in the frontoparietal network before the onset of ALs, and a decrease in FC between default mode network and working memory network. These findings converge to our conclusion that the ALs observed during our task were involuntary mind-blanks. This is further supported behaviourally by the short duration of the ALs (mean 1.7 s), which is considered too brief to be instances of extreme mind-wandering. This is the first study to demonstrate that at least the majority of complete losses of responsiveness on a continuous visuomotor task are, if not due to microsleeps, due to involuntary mind-blanks.


Asunto(s)
Atención , Imagen por Resonancia Magnética , Desempeño Psicomotor , Humanos , Adulto , Femenino , Masculino , Adulto Joven , Atención/fisiología , Desempeño Psicomotor/fisiología , Persona de Mediana Edad , Tecnología de Seguimiento Ocular , Pensamiento/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/fisiología , Estado de Conciencia/fisiología , Percepción Visual/fisiología , Actividad Motora/fisiología
2.
Int J Psychophysiol ; 189: 57-65, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37192708

RESUMEN

BACKGROUND: Microsleeps are brief instances of sleep, causing complete lapses in responsiveness and partial or total extended closure of both eyes. Microsleeps can have devastating consequences, particularly in the transportation sector. STUDY OBJECTIVES: Questions remain regarding the neural signature and underlying mechanisms of microsleeps. This study aimed to gain a better understanding of the physiological substrates of microsleeps, which might lead to a better understanding of the phenomenon. METHODS: Data from an earlier study, involving 20 healthy non-sleep-deprived subjects, were analysed. Each session lasted 50 min and required subjects to perform a 2-D continuous visuomotor tracking task. Simultaneous data collection included tracking performance, eye-video, EEG, and fMRI. A human expert visually inspected each participant's tracking performance and eye-video recordings to identify microsleeps. Our interest was in microsleeps of ≥4-s duration, leaving us with a total of 226 events from 10 subjects. The microsleep events were divided into four 2-s segments (pre, start, end, and post) (with a gap in the middle, between start and end segments, for microsleeps >4 s), then each segment was analysed relative to its prior segment by examining changes in source-reconstructed EEG power in the delta, theta, alpha, beta, and gamma bands. RESULTS: EEG power increased in the theta and alpha bands between the pre and start of microsleeps. There was also increased power in the delta, beta, and gamma bands between the start and end of microsleeps. Conversely, there was a reduction in power between the end and post of microsleeps in the delta and alpha bands. These findings support previous findings in the delta, theta, and alpha bands. However, increased power in the beta and gamma bands has not been previously reported. CONCLUSIONS: We contend that increased high-frequency activity during microsleeps reflects unconscious 'cognitive' activity aimed at re-establishing consciousness following falling asleep during an active task.


Asunto(s)
Estado de Conciencia , Electroencefalografía , Humanos , Sueño/fisiología
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6293-6296, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892552

RESUMEN

A microsleep (MS) is a complete lapse of responsiveness due to an episode of brief sleep (≲ 15 s) with eyes partially or completely closed. MSs are highly correlated with the risk of car accidents, severe injuries, and death. To investigate EEG changes during MSs, we used a 2D continuous visuomotor tracking (CVT) task and eye-video to identify MSs in 20 subjects performing the 50-min task. Following pre-processing, FFT spectral analysis was used to calculate the activity in the EEG delta, theta, alpha, beta, and gamma bands, followed by eLORETA for source reconstruction. A group statistical analysis was performed to compare the change in activity over EEG bands of an MS to its baseline. After correction for multiple comparisons, we found maximum increases in delta, theta, and alpha activities over the frontal lobe, and beta over the parietal and occipital lobes. There were no significant changes in the gamma band, and no significant decreases in any band. Our results are in agreement with previous studies which reported increased alpha activity in MSs. However, this is the first study to have reported increased beta activity during MSs, which, due to the usual association of beta activity with wakefulness, was unexpected.


Asunto(s)
Electroencefalografía , Vigilia , Lóbulo Frontal , Humanos , Lóbulo Occipital , Sueño
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3196-3199, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018684

RESUMEN

Attention lapses (ALs) are common phenomenon, which can affect our performance and productivity by slowing or suspending responsiveness. Occurrence of ALs during continuous monitoring tasks, such as driving or operating machinery, can lead to injuries and fatalities. However, we have limited understanding of what happens in the brain when ALs intrude during such continuous tasks. Here, we analyzed fMRI data from a study, in which participants performed a continuous visuomotor tracking task during fMRI scanning. A total of 68 ALs were identified from 20 individuals, using visual rating of tracking performance and video-based eye-closure. ALs were found to be associated with increased BOLD fMRI activity partially in the executive control network, and sensorimotor network. Surprisingly, we found no evidence of deactivations.


Asunto(s)
Atención , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Estudios Longitudinales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA