Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206635

RESUMEN

White matter tract (WMT) degeneration has been reported to occur following a stroke, and it is associated with post-stroke functional disturbances. White matter pathology has been suggested to be an independent predictor of post-stroke recovery. However, the factors that influence WMT remodeling are poorly understood. Cortisol is a steroid hormone released in response to prolonged stress, and elevated levels of cortisol have been reported to interfere with brain recovery. The objective of this study was to investigate the influence of corticosterone (CORT; the rodent equivalent of cortisol) on WMT structure post-stroke. Photothrombotic stroke (or sham surgery) was induced in 8-week-old male C57BL/6 mice. At 72 h, mice were exposed to standard drinking water ± CORT (100 µg/mL). After two weeks of CORT administration, mice were euthanised and brain tissue collected for histological and biochemical analysis of WMT (particularly the corpus callosum and corticospinal tract). CORT administration was associated with increased tissue loss within the ipsilateral hemisphere, and modest and inconsistent WMT reorganization. Further, a structural and molecular analysis of the WMT components suggested that CORT exerted effects over axons and glial cells. Our findings highlight that CORT at stress-like levels can moderately influence the reorganization and microstructure of WMT post-stroke.


Asunto(s)
Corticosterona/administración & dosificación , Gliosis/metabolismo , Gliosis/patología , Vías Nerviosas/efectos de los fármacos , Accidente Cerebrovascular/metabolismo , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/fisiología , Animales , Axones/metabolismo , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Gliosis/tratamiento farmacológico , Gliosis/etiología , Inmunohistoquímica , Masculino , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Estrés Fisiológico/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología
2.
Stroke ; 49(5): 1257-1266, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29636425

RESUMEN

BACKGROUND AND PURPOSE: Cognitive impairment is a common outcome for stroke survivors. Growth hormone (GH) could represent a potential therapeutic option as this peptide hormone has been shown to improve cognition in various clinical conditions. In this study, we evaluated the effects of peripheral administration of GH at 48 hours poststroke for 28 days on cognitive function and the underlying mechanisms. METHODS: Experimental stroke was induced by photothrombotic occlusion in young adult mice. We assessed the associative memory cognitive domain using mouse touchscreen platform for paired-associate learning task. We also evaluated neural tissue loss, neurotrophic factors, and markers of neuroplasticity and cerebrovascular remodeling using biochemical and histology analyses. RESULTS: Our results show that GH-treated stroked mice made a significant improvement on the paired-associate learning task relative to non-GH-treated mice at the end of the study. Furthermore, we observed reduction of neural tissue loss in GH-treated stroked mice. We identified that GH treatment resulted in significantly higher levels of neurotrophic factors (IGF-1 [insulin-like growth factor-1] and VEGF [vascular endothelial growth factor]) in both the circulatory and peri-infarct regions. GH treatment in stroked mice not only promoted protein levels and density of presynaptic marker (SYN-1 [synapsin-1]) and marker of myelination (MBP [myelin basic protein]) but also increased the density and area coverage of 2 major vasculature markers (CD31 and collagen-IV), within the peri-infarct region. CONCLUSIONS: These findings provide compelling preclinical evidence for the usage of GH as a potential therapeutic tool in the recovery phase of patients after stroke.


Asunto(s)
Aprendizaje por Asociación/efectos de los fármacos , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Hormona del Crecimiento/farmacología , Accidente Cerebrovascular/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Circulación Cerebrovascular , Colágeno Tipo IV/efectos de los fármacos , Colágeno Tipo IV/metabolismo , Factor I del Crecimiento Similar a la Insulina/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Proteína Básica de Mielina/efectos de los fármacos , Proteína Básica de Mielina/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Distribución Aleatoria , Accidente Cerebrovascular/patología , Sinapsinas/efectos de los fármacos , Sinapsinas/metabolismo , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Vascular/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
3.
Brain Behav Immun ; 69: 210-222, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29162554

RESUMEN

Secondary neurodegeneration (SND) is an insidious and progressive condition involving the death of neurons in regions of the brain that were connected to but undamaged by the initial stroke. Our group have published compelling evidence that exposure to psychological stress can significantly exacerbate the severity SND, a finding that has considerable clinical implications given that stroke-survivors often report experiencing high and unremitting levels of psychological stress. It may be possible to use one or more targeted pharmacological approaches to limit the negative effects of stress on the recovery process but in order to move forward with this approach the most critical stress signals have to be identified. Accordingly, in the current study we have directed our attention to examining the potential effects of corticosterone, delivered orally at stress-like levels. Our interest is to determine how similar the effects of corticosterone are to stress on repair and remodelling that is known to occur after stroke. The study involved 4 groups, sham and stroke, either administered corticosterone or normal drinking water. The functional impact was assessed using the cylinder task for paw asymmetry, grid walk for sensorimotor function, inverted grid for muscle strength and coordination and open field for anxiety-like behaviour. Biochemically and histologically, we considered disturbances in main cellular elements of the neurovascular unit, including microglia, astrocytes, neurons and blood vessels using both immunohistochemistry and western blotting. In short, we identified that corticosterone delivery after stroke results in significant suppression of key microglial and astroglial markers. No changes were observed on the vasculature and in neuronal specific markers. No changes were identified for sensorimotor function or anxiety-like behaviour. We did, however, observe a significant change in motor function as assessed using the inverted grid walk test. Collectively, these results suggest that pharmacologically targeting corticosterone levels in the future may be warranted but that such an approach is unlikely to limit all the negative effects associated with exposure to chronic stress.


Asunto(s)
Corticosterona/uso terapéutico , Degeneración Nerviosa/tratamiento farmacológico , Neuroglía/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Tálamo/efectos de los fármacos , Animales , Corticosterona/administración & dosificación , Modelos Animales de Enfermedad , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Degeneración Nerviosa/patología , Neuroglía/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Accidente Cerebrovascular/patología , Tálamo/patología
4.
Brain Behav Immun ; 60: 117-125, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27717686

RESUMEN

Exposure to psychological stress is known to seriously disrupt the operation of the substantia nigra (SN) and may in fact initiate the loss of dopaminergic neurons within the SN. In this study, we aimed to investigate how chronic stress modified the SN in adult male mice. Using a paradigm of repeated restraint stress (an average of 20h per week for 6weeks), we examined changes within the SN using western blotting and immunohistochemistry. We demonstrated that chronic stress was associated with a clear loss of dopaminergic neurons within the SN. The loss of dopaminergic neurons was accompanied by higher levels of oxidative stress damage, indexed by levels of protein carbonylation and strong suppression of both microglial and astrocytic responses. In addition, we demonstrated for the first time, that chronic stress alone enhanced the aggregation of α-synuclein into the insoluble protein fraction. These results indicate that chronic stress triggered loss of dopaminergic neurons by increasing oxidative stress, suppressing glial neuroprotective functions and enhancing the aggregation of the neurotoxic protein, α-synuclein. Collectively, these results reinforce the negative effects of chronic stress on the viability of dopaminergic cells within the SN.


Asunto(s)
Astrocitos/metabolismo , Neuronas Dopaminérgicas/metabolismo , Microglía/metabolismo , Neuroglía/metabolismo , Sustancia Negra/metabolismo , Animales , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología , Estrés Fisiológico/fisiología , alfa-Sinucleína/metabolismo
5.
J Hered ; 108(6): 686-692, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28821182

RESUMEN

Understanding mutation rates can greatly extend the utility of population and conservation genetic analyses. Herein, we present an estimate of genome-wide microsatellite mutation rate in Atlantic sturgeon (Acipenser oxyrinchus) based on parent-offspring transmission patterns. We screened 307 individuals for parentage and mutation-rate analysis applying 43 variable markers. Out of 13228 allele transfers, 11 mutations were detected, producing a mutation rate of 8.3 × 10-4 per locus per generation (95% confidence interval: 1.48 × 10-3, 4.15 × 10-4). Single-step mutations predominated and there were trends toward mutations in loci with greater polymorphism and allele length. Two of the detected mutations were most probably cluster mutations, being identified in 12 and 28 sibs, respectively. Finally, we observed evidences of polyploidy based on the sporadic presence of 3 or 4 alleles per locus in the genotyped individuals, supporting previous reports of incomplete diploidization in Atlantic sturgeon.


Asunto(s)
Peces/genética , Genética de Población , Repeticiones de Microsatélite , Tasa de Mutación , Alelos , Animales , Femenino , Masculino , Poliploidía , Análisis de Secuencia de ADN
6.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986013

RESUMEN

Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden-Popper perovskites, where quantum and dielectric confinement together with soft, polar, and low symmetry lattice create a unique background for electron and hole interaction. Here, with the use of polarization-resolved optical spectroscopy, we have demonstrated that the simultaneous presence of tightly bound excitons, together with strong exciton-phonon coupling, allows for observing the exciton fine structure splitting of the phonon-assisted transitions of two-dimensional perovskite (PEA)2PbI4, where PEA stands for phenylethylammonium. We demonstrate that the phonon-assisted sidebands characteristic for (PEA)2PbI4 are split and linearly polarized, mimicking the characteristics of the corresponding zero-phonon lines. Interestingly, the splitting of differently polarized phonon-assisted transitions can be different from that of the zero-phonon lines. We attribute this effect to the selective coupling of linearly polarized exciton states to non-degenerate phonon modes of different symmetries resulting from the low symmetry of (PEA)2PbI4 lattice.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36429406

RESUMEN

The purpose of this study was to evaluate the best educational techniques used during high-fidelity simulations in training nursing students and to introduce the Polish version of the Educational Practices Questionnaire (EPQ) scale after its cultural adaptation and determination of its psychometric properties. The research group was composed of 361 second- and third-year nursing students in the licentiate program. The Cronbach's alpha reliability coefficients for the adapted tool were 0.90 for the EPQ-PO (presence of educational techniques) subscale and 0.93 for the EPQ-IO subscale (importance of educational techniques). Additionally, the model fit rates in the CFA and EFA (as indicators of theoretical validity) proved to be high enough for the tool to be successfully used in scientific research. Preliminary results are also presented; the mean value of the response for the entire EPQ scale for both the PO and IO sections was M = 4.3, SD ± 0.90. The students in the study rated the opportunity for collaboration with other students and for working jointly on a given clinical situation very highly at M = 4.5, SD ± 0.70. The analysis of the scores of the individual scales and subscales of the EPQ showed statistically significant differences in results obtained for such variables as gender, place of residence, and year of studies.


Asunto(s)
Enseñanza Mediante Simulación de Alta Fidelidad , Estudiantes de Enfermería , Humanos , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Psicometría
8.
PLoS One ; 15(7): e0235785, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32645074

RESUMEN

The interactions between entomopathogenic fungi and insects serve a classic example of a co-evolutionary arms race between pathogens and their target host. The cuticle, site of the first contact between insects and entomopathogenic fungus, is an important defensive barrier against pathogens. It is covered by a layer of lipids that appears to play a key role in these processes and cuticular free fatty acid (FFA) profiles are consider as a determinant of susceptibility, or resistance, to fungal infections. These profiles are species-specific. The cockroaches Blattella germanica (Blattodea: Blattidae) and Blatta orientalis (Blattodea: Ectobiidae) are unsusceptible to the soil fungus Conidiobolus coronatus (Entomophthorales: Ancylistaceae) infection, therefore we studied the profiles of FFAs in order to understand the defensive capabilities of the cockroaches. The fungus was cultivated for three weeks in minimal medium. Cell-free filtrate was obtained, assayed for elastase, N-acetylglucosaminidase, chitobiosidase and lipase activity, and then used for in vitro hydrolysis of the cuticle from wings and thoraces of adults and oothecae. The amounts of amino acids, N-glucosamine and FFAs released from the hydrolysed cuticle samples were measured after eight hours of incubation. The FFA profiles of the cuticle of adults, and the wings, thoraces and oothecae of both species were established using GC-MS and the results were correlated with the effectiveness of fungal proteases, chitinases and lipases in the hydrolyzation of cuticle samples. Positive correlations would suggest the existence of compounds used by the fungus as nutrients, whereas negative correlations may indicate that these compounds could be engaged in insect defence.


Asunto(s)
Cucarachas/microbiología , Conidiobolus/fisiología , Ácidos Grasos/metabolismo , Proteínas Fúngicas/metabolismo , Hidrolasas/metabolismo , Animales , Cucarachas/metabolismo , Femenino , Interacciones Huésped-Patógeno , Masculino
9.
Przegl Lek ; 66(8): 469-70, 2009.
Artículo en Polaco | MEDLINE | ID: mdl-20043597

RESUMEN

Mutual cooperation between medical doctor and nurses are presented, while analizing new trends in the European Union. Nurse family practice and specialist training are discussed as well as new specializations, i.e. Study nurse trained for participation in clinical trials.


Asunto(s)
Práctica Privada de Enfermería/tendencias , Pautas de la Práctica en Enfermería/tendencias , Pautas de la Práctica en Medicina/tendencias , Unión Europea , Predicción , Grupo de Atención al Paciente/tendencias
10.
Transl Stroke Res ; 10(4): 402-412, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30155643

RESUMEN

Low oxygen post conditioning (LOPC) has shown promising results in terms of neuroprotection after stroke, but the effects on motor function have not been considered. Cortical stroke targeting the motor and sensory cortex was induced by photothrombotic occlusion and after 48 h allocated to LOPC (11% O2) for 2 weeks. Motor impairment was assessed using the cylinder and grid walk tests during the exposure period and for two further weeks upon completion of the intervention. Neuroprotection was evaluated by histological and molecular analysis at two time points. Two weeks of LOPC was sufficient to significantly reduce motor deficits and tissue loss after stroke. This functional improvement was associated with increased capillary density, enhanced levels of BDNF, decreased neuronal loss and decreased microglia activation. These improvements, in most instances, were maintained up to 2 weeks after the end of the treatment. To our knowledge, this is the first study to demonstrate that LOPC induces a persistent improvement in motor function and neuroprotection after stroke, and in doing so provides evidence to support a case for considering taking LOPC forward to early stage clinical research.


Asunto(s)
Poscondicionamiento Isquémico/métodos , Destreza Motora/efectos de los fármacos , Oxígeno/administración & dosificación , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Destreza Motora/fisiología , Distribución Aleatoria , Recuperación de la Función/fisiología , Accidente Cerebrovascular/fisiopatología
11.
Physiother Res Int ; 24(3): e1775, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30942552

RESUMEN

OBJECTIVE: This study examined the feasibility of a parallel-group assessor-blinded randomized controlled trial investigating whether task-specific training preceded by aerobic exercise (AEX + TST) improves upper limb function more than task-specific training (TST) alone. METHODS: People with upper limb motor dysfunction after stroke were allocated to TST or AEX + TST. Both groups were prescribed 60 hr of TST over 10 weeks (3 × 1-hr sessions with a therapist per week and 3 × 1 hr of home-based self-practice per week). The AEX + TST group performed 30 minutes of aerobic exercise immediately prior to the 1 hr of TST with the therapist. Recruitment, adherence, retention, participant acceptability, and adverse events were recorded. Clinical measures were performed prerandomization at baseline, on completion of the intervention, and at 1- and 6-month follow-up. RESULTS: Fifty-nine persons after stroke were screened, 42 met the eligibility criteria, and 20 (11 male; mean [SD] age: 55.4 [16.0] years; time since stroke: 71.7 [91.2] months) were recruited over 17 months. The mean Wolf Motor Function Test Functional Ability Score at baseline was 27.4 (max = 75) and the mean Action Research Arm Test score was 11.2 (max = 57). Nine were randomized to AEX + TST and 11 to TST. There were no adverse events, but there was one drop out. Retention at 1- and 6-month follow-up was 80% and 85%, respectively. Attendance was 93% (6) for the AEX + TST group, and 89% (9) for the TST group. AEX + TST was perceived as acceptable (100%) and beneficial (87.5%). Exertional fatigue (visual analogue scale) prior to TST was worse in the AEX + TST group (3.5 [0.7] out of 10) than the TST group (1.7 [1.4] out of 10). The TST group performed 31% more repetitions per session than the AEX + TST group. CONCLUSION: A subsequent Phase III study is feasible, but modifications to eligibility criteria, outcome measures, and intervention delivery are recommended.


Asunto(s)
Terapia por Ejercicio/métodos , Ejercicio Físico , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/terapia , Extremidad Superior/fisiopatología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Participación del Paciente/estadística & datos numéricos , Proyectos Piloto , Accidente Cerebrovascular/fisiopatología , Análisis y Desempeño de Tareas , Resultado del Tratamiento
12.
J Cereb Blood Flow Metab ; 39(12): 2456-2470, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30204044

RESUMEN

It has recently been identified that after motor cortex stroke, the ability of microglia processes to respond to local damage cues is lost from the thalamus, a major site of secondary neurodegeneration (SND). In this study, we combine a photothrombotic stroke model in mice, acute slice and fluorescent imaging to analyse the loss of microglia process responsiveness. The peri-infarct territories and thalamic areas of SND were investigated at time-points 3, 7, 14, 28 and 56 days after stroke. We confirmed the highly specific nature of non-responsive microglia processes to sites of SND. Non-responsiveness was at no time observed at the peri-infarct but started in the thalamus seven days post-stroke and persisted for 56 days. Loss of directed process extension is not a reflection of general functional paralysis as phagocytic function continued to increase over time. Additionally, we identified that somal P2Y12 was present on non-responsive microglia in the first two weeks after stroke but not at later time points. Finally, both classical microglia activation and loss of process extension are highly correlated with neuronal damage. Our findings highlight the importance of microglia, specifically microglia dynamic functions, to the progression of SND post-stroke, and their potential relevance as modulators or therapeutic targets during stroke recovery.


Asunto(s)
Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Accidente Cerebrovascular/metabolismo , Tálamo/metabolismo , Animales , Ratones , Ratones Transgénicos , Microglía/patología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Receptores Purinérgicos P2Y12/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Tálamo/patología , Factores de Tiempo
13.
Sci Rep ; 9(1): 4841, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890719

RESUMEN

In the current study, we were interested in investigating whether Low oxygen post-conditioning (LOPC) was capable of limiting the severity of stroke-induced secondary neurodegeneration (SND). To investigate the effect of LOPC we exposed adult male C57/BL6 mice to photothrombotic occlusion (PTO) of the motor and somatosensory cortex. This is known to induce progressive neurodegeneration in the thalamus within two weeks of infarction. Two days after PTO induction mice were randomly assigned to one of four groups: (i) LOPC-15 day exposure group; (ii) a LOPC 15 day exposure followed by a 15 day exposure to normal atmosphere; (iii) normal atmosphere for 15 days and (iv) normal atmosphere for 30 days (n = 20/group). We observed that LOPC reduced the extent of neuronal loss, as indicated by assessment of both area of loss and NeuN+ cell counts, within the thalamus. Additionally, we identified that LOPC reduced microglial activity and decreased activity within the excitotoxic signalling pathway of the NMDAR axis. Together, these findings suggest that LOPC limits neuronal death caused by excitotoxicity in sites of secondary damage and promotes neuronal survival. In conclusion, this work supports the potential of utilising LOPC to intervene in the sub-acute phase post-stroke to restrict the severity of SND.


Asunto(s)
Neuronas/metabolismo , Oxígeno/metabolismo , Accidente Cerebrovascular/metabolismo , Tálamo/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Recuento de Células , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Accidente Cerebrovascular/patología , Tálamo/patología
14.
PLoS One ; 13(3): e0192715, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29518079

RESUMEN

The entomopathogenic fungus Conidiobolus coronatus produces enzymes that may hydrolyze the cuticle of Galleria mellonella. Of these enzymes, elastase activity was the highest: this figure being 24 times higher than NAGase activity 553 times higher than chitinase activity and 1844 times higher than lipase activity. The present work examines the differences in the hydrolysis of cuticles taken from larvae, pupae and adults (thorax and wings), by C. coronatus enzymes. The cuticles of the larvae and adult thorax were the most susceptible to digestion by proteases and lipases. Moreover, the maximum concentration of free N-glucosamine was in the hydrolysis of G. mellonella thorax. These differences in the digestion of the various types of cuticle may result from differences in their composition. GC-MS analysis of the cuticular fatty acids isolated from pupae of G. mellonella confirmed the presence of C 8:0, C 9:0, C 12:0, C 14:0, C 15:0, C 16:1, C 16:0, C 17:0, C 18:1, C 18:0, with C 16:0 and C 18:0 being present in the highest concentrations. Additional fatty acids were found in extracts from G. mellonella imagines: C 10:0, C 13:0, C 20:0 and C 20:1, with a considerable dominance of C 16:0 and C 18:1. In larvae, C 16:0 and C 18:1 predominated. Statistically significant differences in concentration (p≤0.05) were found between the larvae, pupae and imago for each fatty acid. The qualitative and quantitative differences in the fatty acid composition of G. mellonella cuticle occurring throughout normal development might be responsible for the varied efficiency of fungal enzymes in degrading larval, pupal and adult cuticles.


Asunto(s)
Conidiobolus/enzimología , Ácidos Grasos/metabolismo , Mariposas Nocturnas/metabolismo , Animales , Conidiobolus/fisiología , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Larva/metabolismo , Larva/microbiología , Lipasa/metabolismo , Mariposas Nocturnas/microbiología , Elastasa Pancreática/metabolismo , Péptido Hidrolasas/metabolismo , Pupa/metabolismo , Pupa/microbiología
15.
Neuroscience ; 352: 30-38, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-28288898

RESUMEN

Exposure to chronic stress following stroke has been shown, both clinically and pre-clinically, to impact negatively on the recovery process. While this phenomenon is well established, the specific mechanisms involved have remained largely unexplored. One obvious signaling pathway through which chronic stress may impact on the recovery process is via corticosterone, and its effects on microglial activity and vascular remodeling. In the current study, we were interested in examining how orally delivered corticosterone at a stress-like concentration impacted on microglial activity and vascular remodeling after stroke. We identified that corticosterone administration for two weeks following stroke significantly increased tissue loss and decreased the weight of the spleen and thymus. We also identified that corticosterone administration significantly altered the expression of the key microglial complement receptor, CD11b after stroke. Corticosterone administration did not alter the expression of the vessel basement membrane protein, Collagen IV after stroke. Together, these results suggest that corticosterone is likely to represent only one of the major stress signals responsible for driving the negative impacts of chronic stress on recovery.


Asunto(s)
Antiinflamatorios/administración & dosificación , Corticosterona/administración & dosificación , Microglía/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/etiología , Accidente Cerebrovascular/complicaciones , Enfermedades Vasculares/etiología , Administración Oral , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Antígeno CD11b/metabolismo , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Lateralidad Funcional/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Enfermedades Vasculares/tratamiento farmacológico
17.
Acta Biochim Pol ; 49(1): 249-56, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12136947

RESUMEN

Numerous cytochrome P450 inhibitors have been described as effective modulators of cytochrome P450 isoforms activity in vitro. Their inhibitory efficiency may be considerably modified after in vivo application. The aim of this study was to examine the effect of oral administration of diallyl sulfide--a cytochrome P450 2E1 inhibitor and cimetidine--a cytochrome P450 2C6 and 2C11 inhibitor on rat serum concentration of phenacetin and its metabolite acetaminophen. Both inhibitors increased area under the curve (AUC(0-4 h)) for phenacetin by 50%. Only cimetidine reduced AUC(0-4 h) for acetaminophen indicating inhibition of O-deethylation activity. Quinidine--a cytochrome P450 2D subfamily and P-glycoprotein inhibitor did not change significantly phenacetin bioavailability. These results suggest that diallyl sulfide inhibits the deacetylation pathway catalysed by arylamine N-acetyl transferase. Beside cytochrome P450 1A2 other cytochrome P450 isoforms (2A6 and/or 2C11) are involved in phenacetin O-deethylation in rat.


Asunto(s)
Compuestos Alílicos/farmacología , Cimetidina/farmacología , Fenacetina/metabolismo , Sulfuros/farmacología , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA