Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Phys Chem Chem Phys ; 26(17): 13432-13440, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647242

RESUMEN

The HF molecule is considered the main reservoir of fluorine in the interstellar medium (ISM). Also, the interactions of this molecule with the most common atoms and molecules in the ISM have attracted great interest from the astrochemical community. Collisions between HF and helium have recently caused controversy following a study using a two-dimensional SAPT potential energy surface (PES) that exhibited large discrepancies with previous scattering calculations based on more recent ab initio potentials. To address this issue, our current work aims to develop the most precise three-dimensional PES for the HF+He system. We employ the size-consistent CCSD(T) method in conjunction with the aug-cc-pV6Z basis set. The main features of the new PES as well as the bound states of the He-HF complex are compared to the existing data. The new PES is then utilised to conduct close coupling calculations that demonstrate He-HF as a good instance of vibration-rotation near resonant energy transfer. The novel rate coefficients will be accessible via the BASECOL database, and the use of the new PES is advised when describing HF in helium droplets.

2.
Phys Chem Chem Phys ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046374

RESUMEN

We present here extensive calculations of the O(3P) + H2 and O(3P) + D2 reaction dynamics spanning the temperature range from 200 K to 2500 K. The calculations have been carried out using fully converged time-independent quantum mechanics (TI QM), quasiclassical trajectories (QCT) and ring polymer molecular dynamics (RPMD) on the two lowest lying adiabatic potential energy surfaces (PESs), 13A' and 13A'', calculated by Zanchet et al. [J. Chem. Phys., 2019, 151, 094307]. TI QM rate coefficients were determined using the cumulative reaction probability formalism on each PES including all of the total angular momenta and the Coriolis coupling and can be considered to be essentially exact within the Born-Oppenheimer approximation. The agreement between the rate coefficients calculated by using QM and RPMD is excellent for the reaction with D2 in almost the whole temperature range. For the reaction with H2, although the agreement is very good above 500 K, the deviations are significant at lower temperatures. In contrast, the QCT calculations largely underestimate the rate coefficients for the two isotopic variants due to their inability to account for tunelling. The differences found in the disagreements between RPMD and QM rate coefficients for the reactions for both the isotopologues are indicative of the ability of the RPMD method to accurately describe systems where tunelling plays a relevant role. Considering that both reactions are dominated by tunelling below 500 K, the present results show that RPMD is a very powerful tool for determining rate coefficients. The present QM rate coefficients calculated on adiabatic PESs slightly underestimate the best global fits of the experimental measurements, which we attribute to the intersystem crossing with the singlet 11A' PES.

3.
J Chem Phys ; 161(4)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39037135

RESUMEN

We report a study on the reactive collision of S+(4S) with H2, HD, and D2 combining guided ion beam experiments and quantum-mechanical calculations. It is found that the reactive cross sections reflect the existence of two different mechanisms, one being spin-forbidden. Using different models, we demonstrate that the spin-forbidden pathway follows a complex mechanism involving three electronic states instead of two as previously thought. The good agreement between theory and experiment validates the methodology employed and allows us to fully understand the reaction mechanism. This study also provides new fundamental insights into the intersystem crossing process.

4.
Chemistry ; 29(49): e202301517, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204268

RESUMEN

Sub-nanometer metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude "breathing" motions. A chemical phase diagram for Cu oxidation states of the Cu5 -oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu.

5.
Chemphyschem ; 24(15): e202300291, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326130

RESUMEN

The (H 2 ${{}_{2}}$ CO) 2 ${{}_{2}}$ +OH and H 2 ${{}_{2}}$ CO-OH+H 2 ${{}_{2}}$ CO reaction dynamics are studied theoretically for temperatures below 300 K. For this purpose, a full dimension potential energy surface is built, which reproduces well accurate ab initio calculations. The potential presents a submerged reaction barrier, as an example of the catalytic effect induced by the presence of the third molecule. However, quasi-classical and ring polymer molecular dynamics calculations show that the dominant channel is the dimer-exchange mechanism below 200 K, and that the reactive rate constant tends to stabilize at low temperatures, because the effective dipole of either dimer is reduced with respect to that of formaldehyde alone. The reaction complex formed at low temperatures does not live long enough to produce complete energy relaxation, as assumed in statistical theories. These results show that the reactivity of the dimers cannot explain the large rate constants measured at temperatures below 100 K.

6.
Phys Chem Chem Phys ; 25(16): 11684-11696, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37057377

RESUMEN

The site-specific hydrogen-atom elimination mechanism previously reported for photoexcited ethyl radicals (CH3CH2) [D. V. Chicharro et al., Chem. Sci., 2019, 10, 6494] is interrogated in the photodissociation of the ethyl isotopologues CD3CD2, CH3CD2 and CD3CH2 through the velocity map imaging (VMI) detection of the produced hydrogen- and deuterium-atoms. The radicals, generated in situ from photolysis of a precursor using the same laser pulse employed in their excitation to Rydberg states, decompose along the Cα-H/D and Cß-H/D reaction coordinates through coexisting statistical and site-specific mechanisms. The experiments are carried out at two excitation wavelengths, 201 and 193 nm. The comparison between both sets of results provides accurate information regarding the primary role in the site-specific mechanism of the radical internal reservoir. Importantly, at 193 nm excitation, higher energy dissociation channels (not observed at 201 nm) producing low-recoil H/D-atoms become accessible. High-level ab initio calculations of potential energy curves and the corresponding non-adiabatic interactions allow us to rationalize the experimental results in terms of competitive non-adiabatic decomposition paths. Finally, the adiabatic behavior of the conical intersections in the face of several vibrational modes - the so-called vibrational promoting modes - is discussed.

7.
J Chem Phys ; 159(6)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37555612

RESUMEN

The photodissociation dynamics leading to the C-N bond cleavage in methylamine (CH3NH2) are investigated upon photoexcitation in the blue edge of the first absorption A-band, in the 198-204 nm range. Velocity map images of the generated methyl (CH3) fragment detected in specific vibrational modes, i.e., ν = 0, ν1 = 1, and ν2 = 1, through resonance enhanced multiphoton ionization, are presented along with the corresponding translational energy distributions and the angular analysis. The experimental results are complemented by high-level ab initio calculations of potential energy curves as a function of the C-N bond distance. While a similar single Boltzmann-type contribution is observed in all the translational energy distributions measured, the speed-dependent anisotropy parameter obtained through the angular analysis reveals the presence of two different mechanisms. Prompt dissociation through the conical intersection between the Ã1A' first excited state and the ground state located in the exit channel is, indeed, revealed as a minor channel. In contrast, slow dissociation on the ground state, presumably from frustrated N-H bond cleavage trajectories, constitutes the major reaction pathway leading to the methyl formation.

8.
J Chem Phys ; 158(23)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37326159

RESUMEN

The photodissociation dynamics of methylamine (CH3NH2) upon excitation in the blue edge of the first absorption A-band, in the 198-203 nm range, are investigated by means of nanosecond pump-probe laser pulses and velocity map imaging combined with H(2S)-atom detection through resonance enhanced multiphoton ionization. The images and corresponding translational energy distributions for the H-atoms produced show three different contributions associated with three reaction pathways. The experimental results are complemented by high-level ab initio calculations. The potential energy curves computed as a function of the N-H and C-H bond distances allow us to draw a picture of the different mechanisms. Major dissociation occurs through N-H bond cleavage and it is triggered by an initial geometrical change, i.e., from a pyramidal configuration of the C-NH2 with respect to the N atom to a planar geometry. The molecule is then driven into a conical intersection (CI) seam where three outcomes can take place: first, threshold dissociation into the second dissociation limit, associated with the formation of CH3NH(Ã), is observed; second, direct dissociation after passage through the CI leading to the formation of ground state products; and third, internal conversion into the ground state well in advance to dissociation. While the two last pathways were previously reported at a variety of wavelengths in the 203-240 nm range, the former had not been observed before to the best of our knowledge. The role of the CI and the presence of an exit barrier in the excited state, which modify the dynamics leading the two last mechanisms, are discussed considering the different excitation energies used.


Asunto(s)
Luz , Metilaminas
9.
J Phys Chem A ; 126(45): 8404-8422, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36322967

RESUMEN

The photodissociation dynamics and photofragment alignment of bromoiodomethane (CH2BrI) have been studied at 193 nm using a double experimental and theoretical approach. In addition, the ultraviolet (UV)-vacuum ultraviolet (VUV) absorption spectrum of gas phase CH2BrI has been measured in the photon energy range of 5-11 eV using the VUV Fourier transform spectrometer (FTS) at the VUV beamline DESIRS of the synchrotron SOLEIL facility. The slice imaging technique in combination with resonance enhanced multiphoton ionization (REMPI) detection of the Br(2PJ) and I(2PJ) (with J = 3/2 and 1/2 for Br/I and Br*/I*, respectively) atomic photofragments have been used to produce experimental translational energy and angular distributions, which were analyzed to deliver, on one hand, the partitioning of the available energy among the different degrees-of-freedom of the photofragments and, on the other, the photofragment polarization in terms of aqk(p) alignment parameters. The experimental measurements were rationalized in terms of high-level ab initio calculations of vertical excitation energies, transition dipole moments and potential energy curves (PECs) along different reaction coordinates to provide a complete picture of the photodissociation dynamics. The results indicate that for excitation at 193 nm, prompt C-X cleavage (with X being either halogen atom, Br or I) competes with fast internal conversion and consequent stochastic dissociation in lower electronic states. In the case of the CH2Br + I(2P3/2)/I*(2P1/2) channels, the dynamics are greatly biased toward the stochastic dissociation process due to both the particular PECs landscape and the unfavored excitation of the CH2BrI ensemble with respect to the C-I molecular axis at this excitation energy. The ab initio PECs provide a tentative path for the fast dissociation process in either case. For the C-Br bond breakage, excitation to the 13A' electronic state and predissociation through the 11A'/11A″ or 12A'/12A″ states, leading to direct dissociation through the 10A'/9A″ states, appear as the most consistent dynamics. For the C-I channel, predissociation does not become a reliable possibility and a fast internal conversion may precede dissociation through the repulsive 6A'/6A″ and 4A'/4A″ states. The large content of rotational and vibrational excitation of the polyatomic cofragments is justified through the soft impulsive model and the geometrical changes produced along the dissociation pathway. Strikingly, the aqk(p) alignment parameters obtained for the Br(2P3/2) and I(2P3/2) photoproducts indicate that the rotational angular momentum of the CH2X (X = I or Br) cofragment appears highly constrained along the recoil direction. Finally, this work presents a highly plausible explanation for the branching ratio of secondary dissociation processes in the photodynamics of CH2BrI at 193 nm.

10.
Chemistry ; 27(5): 1700-1712, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-32975323

RESUMEN

Despite being a very strong oxidizing agent, most organic molecules are not oxidized in the presence of O2 at room temperature because O2 is a diradical whereas most organic molecules are closed-shell. Oxidation then requires a change in the spin state of the system, which is forbidden according to non-relativistic quantum theory. To overcome this limitation, oxygenases usually rely on metal or redox cofactors to catalyze the incorporation of, at least, one oxygen atom into an organic substrate. However, some oxygenases do not require any cofactor, and the detailed mechanism followed by these enzymes remains elusive. To fill this gap, here the mechanism for the enzymatic cofactor-independent oxidation of 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) is studied by combining multireference calculations on a model system with QM/MM calculations. Our results reveal that intersystem crossing takes place without requiring the previous protonation of molecular oxygen. The characterization of the electronic states reveals that electron transfer is concomitant with the triplet-singlet transition. The enzyme plays a passive role in promoting the intersystem crossing, although spontaneous reorganization of the water wire connecting the active site with the bulk presets the substrate for subsequent chemical transformations. The results show that the stabilization of the singlet radical-pair between dioxygen and enolate is enough to promote spin-forbidden reaction without the need for neither metal cofactors nor basic residues in the active site.


Asunto(s)
Biocatálisis , Coenzima A/química , Coenzima A/metabolismo , Oxigenasas/metabolismo , Transporte de Electrón , Oxigenasas/química , Teoría Cuántica
11.
Phys Chem Chem Phys ; 23(3): 2458-2468, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33463638

RESUMEN

A prompt site-specific hydrogen-atom elimination from the α-carbon atom (Cα) has been recently reported to occur in the photodissociation of ethyl radicals following excitation at 201 nm [Chicharro et al., Chem. Sci., 2019, 10, 6494]. Such pathway was accessed by means of an initial ro-vibrational energy characterizing the radicals produced by in situ photolysis of a precursor. Here, we present experimental evidence of a similar dynamics in a series of alkyl radicals (C2H5, n-C3H7, n-C4H9, and i-C3H7) containing the same reaction coordinate, but different extended structures. The main requirements for the site-specific mechanism in the studied radicals, namely a rather high content of internal energy prior to dissociation and the participation of vibrational promoting modes, is discussed in terms of the chemical structure of the radicals. The methyl deformation mode in all alkyl radicals along with the CH bending motion in i-C3H7 appear to promote this fast H-atom elimination channel. The photodissociation dynamics of the simplest unsaturated alkyl radical, the vinyl radical (C2H3), is also discussed, showing no signal of site-specific fast H-atom elimination. The results are complemented with high-level ab initio electronic structure calculations of potential energy curves of the vinyl radical, which are compared with those previously reported for the ethyl radical.

12.
J Phys Chem A ; 125(41): 9143-9150, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34633823

RESUMEN

The electronic structure of subnanometric clusters, far off the bulk regime, is still dominated by molecular characteristics. The spatial arrangement of the notoriously undercoordinated metal atoms is strongly coupled to the electronic properties of the system, which makes this class of materials particularly interesting for applications including luminescence, sensing, bioimaging, theranostics, energy conversion, catalysis, and photocatalysis. Opposing a common rule of thumb that assumes an increasing chemical reactivity with smaller cluster size, Cu5 clusters have proven to be exceptionally resistant to irreversible oxidation, i.e., the dissociative chemisorption of molecular oxygen. Besides providing reasons for this behavior in the case of heavy loading with molecular oxygen, we investigate the competition between physisorption and molecular chemisorption from the perspective of nonadiabatic effects. Landau-Zener theory is applied to the Cu5(O2)3 complex to estimate the probability for a switching between the electronic states correlating the neutral O2 + Cu5(O2)2 and the ionic O2- + (Cu5(O2)2)+ fragments in a diabatic representation. Our work demonstrates the involvement of strong nonadiabatic effects in the associated charge transfer process, which might be a common motive in reactions involving subnanometric metal structures.

13.
J Phys Chem A ; 125(28): 6122-6130, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34232644

RESUMEN

VUV photoionization of the CHnI radicals (with n = 0, 1, and 2) is investigated by means of synchrotron radiation coupled with a double imaging photoion-photoelectron coincidence spectrometer. Photoionization efficiencies and threshold photoelectron spectra (TPES) for photon energies ranging between 9.2 and 12.0 eV are reported. An adiabatic ionization energy (AIE) of 8.334 ± 0.005 eV is obtained for CH2I, which is in good agreement with previous results [8.333 ± 0.015 eV, Sztáray J. Chem. Phys. 2017, 147, 013944], while for CI an AIE of 8.374 ± 0.005 eV is measured for the first time and a value of ∼8.8 eV is estimated for CHI. Ab initio calculations have been carried out for the ground state of the CH2I radical and for the ground state and excited states of the radical cation CH2I+, including potential energy curves along the C-I coordinate. Franck-Condon factors are calculated for transitions from the CH2I(X̃2B1) ground state of the neutral radical to the ground state and excited states of the radical cation. The TPES measured for the CH2I radical shows several structures that correspond to the photoionization into excited states of the radical cation and are fully assigned on the basis of the calculations. The TPES obtained for the CHI is characterized by a broad structure peaking at 9.335 eV, which could be due to the photoionization from both the singlet and the triplet states and into one or more electronic states of the cation. A vibrational progression is clearly observed in the TPES for the CI radical and a frequency for the C-I stretching mode of 760 ± 60 cm-1 characterizing the CI+ electronic ground state has been extracted.

14.
Phys Chem Chem Phys ; 22(30): 17091-17105, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32685952

RESUMEN

We present the dynamics of the electronic quenching OH(A2Σ+) + Kr(1S) → OH(X2Π) + Kr(1S), with OH(A2Σ+) in the ground ro-vibrational state. This study relies on a new non-adiabatic quantum theory that uses three diabatic electronic states Σ+, Π', and Π'', coupled by one conical-intersection and nine Renner-Teller matrix elements, all of which are explicitly considered in the equation of the motion. The time-dependent mechanism and initial-state-resolved quenching probabilities, integral cross sections, thermal rate constants, and thermally-averaged cross sections are calculated via the real wavepacket method. The results point out a competition among three non-adiabatic pathways: Σ+ ↔ Π', Σ+ ↔ Π'', and Π' ↔ Π''. In particular, the conical-intersection effects Σ+-Π' are more important than the Renner-Teller couplings Σ+-Π', Σ+-Π'', and Π'-Π''. Therefore, Π' is the preferred product channel. The quenching occurs via an indirect insertion mechanism, opening many collision complexes, and the probabilities thus present many oscillations. Some resonances are still observable in the cross sections, which are in good agreement with previous experimental and quasi-classical findings. We also discuss the validity of more approximate quantum methods.

15.
Phys Chem Chem Phys ; 22(23): 12886-12893, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32315003

RESUMEN

The valence-shell photoionization of formaldehyde is investigated by means of combining Photo-Electron Photo-Ion COincidence (PEPICO) experiments and ab initio calculations. The formation of three ion fragments: HCO+, CO+ and H, via dissociative photoionization following excitation at 17 eV is discussed. The experimental results consisting of electron-ion kinetic energy correlation diagrams for the corresponding coincident events, i.e. (HCO+, e-), (CO+, e-) and (H, e-), as well as the fragment abundance as a function of the binding energy, are complemented by high level electronic structure calculations including potential energy curves and on-the-fly trajectories. The results are consistent with a main relaxation process via internal conversion into rovibrationally excited levels of the H2CO+ ground state, followed by statistical dissociation, preferentially into HCO+. The analysis of the experimental results reveals nevertheless the signature of a conical intersection controlling the dynamics and favoring dissociation into the molecular channel, CO+ + H2. In addition, the minor formation of the H ion is suggested to occur through a roaming pathway on the cation excited state.

16.
Phys Chem Chem Phys ; 21(41): 23017-23025, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31599893

RESUMEN

The photodissociation dynamics of the ethyl radical following excitation into the 3s and 3p Rydberg states are revisited in a joint experimental and theoretical study. Two different methods to produce the ethyl radical, pyrolysis and in situ photolysis, are employed in order to modify the initial ro-vibrational energy distribution characterizing the ethyl radical beam. H-atom velocity map images following excitation of the radical at 243 nm and at 201 nm are presented and discussed along with ab initio potential energy curves focussing on the bridged C2v geometry. The reported results show that the dynamics following excitation to the 3s Rydberg state is insensitive to the initial internal energy of the parent radical, in contrast to the dynamics on the 3p Rydberg state, which is strongly modified. The role of the bridged C2v geometry on both photodynamics is highlighted and discussed.

17.
J Chem Phys ; 151(9): 094307, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31492055

RESUMEN

This paper presents two new adiabatic, global potential energy surfaces (PESs) for the two lowest 3A' and 3A″ electronic states of the O(3P) + H2 system. For each of these states, ab initio electronic energies were calculated for more than 5000 geometries using internally contracted multireference configuration interaction methods. The calculated points were then fitted using the ansatz by Aguado et al. [Comput. Phys. Commun. 108, 259 (1998)] leading to very accurate analytical potentials well adapted to perform reaction dynamics studies. Overall, the topographies of both PESs are in good agreement with the benchmark potentials of Rogers et al. [J. Phys. Chem. A 104, 2308 (2000)], but those presented in this work reproduce better the height and degeneracy of the two states at the saddle point. Moreover, the long range potential in the entrance channel does not require any cutoff. These features make the new PESs particularly suitable for a comparison of the dynamics on each of them. The new set of PESs was then used to perform quantum mechanics and quasiclassical trajectory calculations to determine differential and integral cross sections, which are compared to the experimental measurements by Garton et al. [J. Chem. Phys. 118, 1585 (2003)].

18.
Phys Chem Chem Phys ; 20(40): 25951-25958, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30294740

RESUMEN

Is the rise of the rate constant measured in laval expansion experiments of OH with organic molecules at low temperatures due to the reaction between the reactants or due to the formation of complexes with the buffer gas? This question has importance for understanding the evolution of prebiotic molecules observed in different astrophysical objects. Among these molecules methanol is one of the most widely observed, and its reaction with OH has been studied by several groups showing a fast increase in the rate constant under 100 K. Transition state theory doesn't reproduce this behavior and here dynamical calculations are performed on a new full dimensional potential energy surface developed for this purpose. The calculated classical reactive cross sections show an increase at low collision energies due to a complex forming mechanism. However, the calculated rate constant at temperatures below 100 K remains lower than the observed one. Quantum effects are likely responsible for the measured behavior at low temperatures.

19.
Phys Chem Chem Phys ; 20(8): 5415-5426, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28959812

RESUMEN

A new method is proposed to analytically represent the potential energy surface of reactions involving polyatomic molecules capable of accurately describing long-range interactions and saddle points, needed to describe low-temperature collisions. It is based on two terms, a reactive force field term and a many-body term. The reactive force field term accurately describes the fragments, long-range interactions among them and the saddle points for reactions. The many-body term increases the desired accuracy everywhere else. This method has been applied to the OH + H2CO → H2O + HCO reaction, giving a barrier of 27.4 meV. The simulated classical rate constants with this potential are in good agreement with recent experimental results [Ocaña et al., Astrophys. J., 2017, submitted], showing an important increase at temperatures below 100 K. The reaction mechanism is analyzed in detail here, and explains the observed behavior at low energy by the formation of long-lived collision complexes, with roaming trajectories, with a capture observed for very long impact parameters, >100 a.u., determined by the long-range dipole-dipole interaction.

20.
Phys Chem Chem Phys ; 18(16): 11391-400, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27055725

RESUMEN

State-to-state cross-sections for the S(+) + H2(v,j) → SH(+)(v',j') + H endothermic reaction are obtained using quantum wave packet (WP) and quasi-classical (QCT) methods for different initial ro-vibrational H2(v,j) over a wide range of translation energies. The final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient that vibrational energy is the most favorable for the reaction, and rotational excitation significantly enhances the reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid to an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2. An interesting resonant behaviour found in WP calculations is also discussed and associated with the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al. for S(+) + HD and S(+) + D2 reactions exhibits a reasonably good agreement with those results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA