Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 235, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142995

RESUMEN

BACKGROUND: Rosa rugosa is a shrub that originated in China and has economic and ecological value. However, during the development of R. rugosa, the genetic background was chaotic, and the genetic structure among different wild populations was unclear, as well as wild and cultivated accessions. Here, we report whole-genome resequencing of wild and cultivated R. rugosa accessions. RESULTS: A total of 19,041,284 SNPs were identified in 188 R. rugosa accessions and 3 R. chinensis accessions by resequencing. Population genetic analysis revealed that cultivated and wild groups were separated very early. All R. rugosa accessions were divided into 8 categories based on genetic structure: (1) Weihai, Yantai, and Liaoning category, (2) Jilin category, and (3) Hammonasset category (above three are wild); (4) traditional varieties, (5) hybrids between R. rugosa and R. chinensis, (6) Zizhi Rose, (7) Kushui Rose, (8) hybrids between R. rugosa and R. multiflora. We found that the heterozygosity and genetic diversity of wild accessions were generally lower than those of cultivated individuals. The genes that were selected during cultivation were identified, and it was found that these genes were mainly related to environmental adaptation and growth. CONCLUSIONS: The Jilin population was the oldest population and later migrated to Liaoning and then migrated to Yantai and Weihai by sea regression in the Bohai Basin. The Hammonasset naturalized population probably originated from the Jilin population and then experienced separate differentiation. The long-term asexual reproduction pattern of R. rugosa decreased genetic diversity in the wild population. During R. rugosa cultivation, the ancestors of the Jilin population were involved in breeding traditional varieties, after which almost no wild individuals were engaged in breeding. However, in recent decades, cross breeding of R. rugosa started the utilization of wild germplasms. In comparison, some other species play important roles in variety formation. Few genes related to economic traits were selected, suggesting no directional domestication in the R. rugosa cultivation process.


Asunto(s)
Rosa , Rosa/genética , Domesticación , Fitomejoramiento , Análisis de Secuencia de ADN , Dinámica Poblacional
2.
Front Plant Sci ; 13: 936571, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958221

RESUMEN

The genus Akebia belongs to the Lardizabalaceae family and comprises five species that are primarily distributed in East Asia. Plants of the Akebia genus comprise deciduous and semi-evergreen perennial twining vines that have been used in Chinese herbal medicine for at least 2000 years. The plants of this genus have the potential to form a novel forest crop with high nutritional and economic value because their fruit has a delicious sweet taste and rich nutrient components. In this study, we organized, analyzed, and evaluated the available published scientific literature on the botanical, ecological, and phytochemical characteristics of Akebia plants. Based on these studies, we briefly introduced botanical and ecological characteristics and focused on reviewing the development and utilization of wild genetic resources in the genus Akebia. We further explored the genus' rich nutritional components, such as triterpenes, flavonoids, polyphenols, polysaccharides, and fatty acids, and their potential use in food and health improvement applications. In addition, several papers describing advances in biotechnological research focusing on micropropagation, nutrient biosynthesis, and fruit ripeness were also included. This review provides comprehensive knowledge of the Akebia genus as a new forest crop for food and fruit utilization, and we also discuss future breeding and research prospects.

3.
DNA Res ; 28(5)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34499118

RESUMEN

Rosa rugosa is an important shrub with economic, ecological, and pharmaceutical value. A high-quality chromosome-scale genome for R. rugosa sequences was assembled using PacBio and Hi-C technologies. The final assembly genome sequences size was about 407.1 Mb, the contig N50 size was 2.85 Mb, and the scaffold N50 size was 56.6 Mb. More than 98% of the assembled genome sequences were anchored to seven pseudochromosomes (402.9 Mb). The genome contained 37,512 protein-coding genes, with 37,016 genes (98.68%) that were functionally annotated, and 206.67 Mb (50.76%) of the assembled sequences are repetitive sequences. Phylogenetic analyses indicated that R. rugosa diverged from Rosa chinensis ∼6.6 million years ago, and no lineage-specific whole-genome duplication event occurred after divergence from R. chinensis. Chromosome synteny analysis demonstrated highly conserved synteny between R. rugosa and R. chinensis, between R. rugosa and Prunus persica as well. Comparative genome and transcriptome analysis revealed genes related to colour, scent, and environment adaptation. The chromosome-level reference genome provides important genomic resources for molecular-assisted breeding and horticultural comparative genomics research.


Asunto(s)
Rosa , Cromosomas , Genoma , Genómica , Filogenia , Rosa/genética
4.
Sci Rep ; 10(1): 16249, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004908

RESUMEN

Populus wulianensis is an endangered species endemic to Shandong Province, China. Despite the economic and ornamental value of this species, few genomics and genetic studies have been performed. In this study, we performed a relevant analysis of the full-length transcriptome sequencing data of P. wulianensis and obtained expressed sequence tag (EST)-simple sequence repeat (SSR) markers with polymorphisms that can be used for further genetic research. In total, 8.18 Gb (3,521,665) clean reads with an average GC content of 42.12% were obtained. From the corrected 64,737 high-quality isoforms, 42,323 transcript sequences were obtained after redundancy analysis with CD-HIT. Among these transcript sequences, 41,876 sequences were annotated successfully. A total of 23,539 potential EST-SSRs were identified from 16,057 sequences. Excluding mononucleotides, the most abundant motifs were trinucleotide SSRs (47.80%), followed by di- (46.80%), tetra- (2.98%), hexa- (1.58%) and pentanucleotide SSRs (0.84%). Among the 100 designed EST-SSRs, 18 were polymorphic with high PIC values (0.721 and 0.683) and could be used for analyses of the genetic diversity and population structure of P. wulianensis. These full-length transcriptome sequencing data will facilitate gene discovery and functional genomics research in P. wulianensis, and the novel EST-SSRs developed in our study will promote molecular-assisted breeding, genetic diversity and conservation biology research in this species.


Asunto(s)
Perfilación de la Expresión Génica , Populus/genética , China , Especies en Peligro de Extinción , Etiquetas de Secuencia Expresada , Marcadores Genéticos/genética , Repeticiones de Microsatélite/genética , Polimorfismo Genético/genética , Análisis de Secuencia de ADN
5.
Mitochondrial DNA B Resour ; 4(2): 2369-2370, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-33365548

RESUMEN

Dalbergia cultrata is a Near Threatened species with high ecological and economic values. In this study, its chloroplast genome was assembled using Illumina pair-end sequencing dataset. The chloroplast genome has a quadripartite structure with 156,385 bp in length and contains a pair of 16,392 bp inverted repeat (IR) regions, which were separated by large single copy (LSC: 86,040 bp) region and small single copy (SSC: 37,561 bp) region. A total of 121 genes were annotated, including 77 protein-coding genes (PCGs), 36 tRNAs, and 8 rRNAs. The overall GC content was 36.1%. The phylogenetic analysis revealed that D. cultrata has close relationship to D. hainanensis and D. odorifera. This complete chloroplast genome can be readily used for population genetic studies of D. cultrata.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA