Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 714: 136854, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32018987

RESUMEN

The exposure of critical infrastructure to natural and human-induced hazards has severe consequences on world economies and societies. Therefore, resilience assessment of infrastructure assets to extreme events and sequences of diverse hazards is of paramount importance for maintaining their functionality. Yet, the resilience assessment commonly assumes single hazards and ignores alternative approaches and decisions in the restoration strategy. It has now been established that infrastructure owners and operators consider different factors in their restoration strategies depending on the available resources and their priorities, the importance of the asset and the level of damage. Currently, no integrated framework that accounts for the nature and sequence of multiple hazards and their impacts, the different strategies of restoration, and hence the quantification of resilience in that respect exists and this is an acknowledged gap that needs urgently filling. This paper provides, for the first time in the literature, a classification of multiple hazard sequences considering their nature and impacts. Subsequently, a novel framework for the quantitative resilience assessment of critical infrastructure, subjected to multiple hazards is proposed, considering the vulnerability of the assets to hazard actions, and the rapidity of the damage recovery, including the temporal variability of the hazards. The study puts forward a well-informed asset resilience index, which accounts for the full, partial or no restoration of asset damage between the subsequent hazard occurrences. The proposed framework is then applied on a typical highway bridge, which is exposed to realistic multiple hazard scenarios, considering pragmatic restoration strategies. The case study concludes that there is a significant effect of the occurrence time of the second hazard on the resilience index and a considerable error when using simple superimposition of resilience indices from different hazards, even when they are independent in terms of occurrence. This potentially concerns all critical infrastructure assets and, hence, this paper provides useful insights for the resilience-based design and management of infrastructure throughout their lifetime, leading to cost savings and improved services. The paper concludes with a demonstration of the importance of the framework and how this can be utilised to estimate the resilience of networks to provide a quantification of the resilience at a regional and country scale.

2.
Waste Manag ; 49: 146-155, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26810029

RESUMEN

The consumption of natural aggregates in civil engineering applications can cause severe environmental impacts on a regional scale, depleting the stock of bulk resources within a territory. Several methods can improve the environmental sustainability of the whole aggregates' supply process, including natural and recycled aggregates' productive chains, for instance promoting the use of recycled aggregates (RA). However, when quarrying and recycling activities are considered as stand-alone processes, also the RA supply chain may not be as sustainable as expected, due to the high environmental loads associated to transportation, if high distances from the production to the use sites are involved. This work gives some insights on the environmental impact assessment of the aggregates' industry in the Italian context, through a comparative assessment of the environmental loads of natural and recycled aggregates' productive chains. An integrated plant for the extraction of virgin aggregates and recycling of construction and demolition waste (C&DW) was analyzed as significant case study, with the aim to identify the influence of sustainable solutions on the overall emissions of the facility. A Life Cycle Assessment (LCA) approach was used, using site-specific data and paying particular attention on transportation-related impacts, land use, avoided landfill and non-renewable resources preservation. From this work it was possible to evaluate the influence of transportation and PV energy use on the overall environmental emissions of natural and recycled aggregates' productive chains.


Asunto(s)
Industria de la Construcción/métodos , Reciclaje , Administración de Residuos/métodos , Materiales de Construcción , Ambiente , Italia , Transportes , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA