Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Histochem Cell Biol ; 157(1): 27-38, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34524512

RESUMEN

Adapted fixation methods for electron microscopy allowed us to study liver cell fine structure in 217 biopsies of intact human livers over the course of 10 years. The following novel observations and concepts arose: single fat droplets in parenchymal cells can grow to a volume four times larger than the original cell, thereby extremely marginalizing the cytoplasm with all organelles. Necrosis of single parenchymal cells, still containing one huge fat droplet, suggests death by fat in a process of single-cell steatonecrosis. In a later stage of single-cell steatonecrosis, neutrophils and erythrocytes surround the single fat droplet, forming an inflammatory fat follicle indicating the apparent onset of inflammation. Also, fat droplets frequently incorporate masses of filamentous fragments and other material, most probably representing Mallory substance. No other structure or material was found that could possibly represent Mallory bodies. We regularly observe the extrusion of huge fat droplets, traversing the peripheral cytoplasm of parenchymal cells, the Disse space and the endothelium. These fat droplets fill the sinusoid as a sinusoidal lipid embolus. In conclusion, adapted methods of fixation applied to human liver tissue revealed that single, huge fat droplets cause necrosis and inflammation in single parenchymal cells. Fat droplets also collect Mallory substance and give rise to sinusoidal fat emboli. Therefore, degreasing of the liver seems to be an essential therapeutic first step in the self-repairing of non-alcoholic fatty liver disease. This might directly reduce single-cell steatotic necrosis and inflammation as elements in non-alcoholic steatohepatitis progression.


Asunto(s)
Hígado , Enfermedad del Hígado Graso no Alcohólico , Hepatocitos/patología , Humanos , Inflamación/metabolismo , Hígado/patología , Necrosis/metabolismo , Necrosis/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077249

RESUMEN

Liver sinusoidal endothelial cells (LSECs) facilitate the efficient transport of macromolecules and solutes between the blood and hepatocytes. The efficiency of this transport is realized via transcellular nanopores, called fenestrations. The mean fenestration size is 140 ± 20 nm, with the range from 50 nm to 350 nm being mostly below the limits of diffraction of visible light. The cellular mechanisms controlling fenestrations are still poorly understood. In this study, we tested a hypothesis that both Rho kinase (ROCK) and myosin light chain (MLC) kinase (MLCK)-dependent phosphorylation of MLC regulates fenestrations. We verified the hypothesis using a combination of several molecular inhibitors and by applying two high-resolution microscopy modalities: structured illumination microscopy (SIM) and scanning electron microscopy (SEM). We demonstrated precise, dose-dependent, and reversible regulation of the mean fenestration diameter within a wide range from 120 nm to 220 nm and the fine-tuning of the porosity in a range from ~0% up to 12% using the ROCK pathway. Moreover, our findings indicate that MLCK is involved in the formation of new fenestrations-after inhibiting MLCK, closed fenestrations cannot be reopened with other agents. We, therefore, conclude that the Rho-ROCK pathway is responsible for the control of the fenestration diameter, while the inhibition of MLCK prevents the formation of new fenestrations.


Asunto(s)
Actinas , Cadenas Ligeras de Miosina , Actinas/metabolismo , Animales , Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones , Microscopía Electrónica de Rastreo , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación , Quinasas Asociadas a rho/metabolismo
3.
Traffic ; 20(12): 932-942, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31569283

RESUMEN

Fenestrae are open transmembrane pores that are a structural hallmark of healthy liver sinusoidal endothelial cells (LSECs). Their key role is the transport of solutes and macromolecular complexes between the sinusoidal lumen and the space of Disse. To date, the biochemical nature of the cytoskeleton elements that surround the fenestrae and sieve plates in LSECs remain largely elusive. Herein, we took advantage of the latest developments in atomic force imaging and super-resolution fluorescence nanoscopy to define the organization of the supramolecular complex(es) that surround the fenestrae. Our data revealed that spectrin, together with actin, lines the inner cell membrane and provided direct structural support to the membrane-bound pores. We conclusively demonstrated that diamide and iodoacetic acid (IAA) affect fenestrae number by destabilizing the LSEC actin-spectrin scaffold. Furthermore, IAA induces rapid and repeatable switching between the open vs closed state of the fenestrae, indicating that the spectrin-actin complex could play an important role in controlling the pore number. Our results suggest that spectrin functions as a key regulator in the structural preservation of the fenestrae, and as such, it might serve as a molecular target for altering transendothelial permeability.


Asunto(s)
Actinas/metabolismo , Membrana Celular/ultraestructura , Células Endoteliales/ultraestructura , Hígado/ultraestructura , Espectrina/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Hígado/irrigación sanguínea , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Imagen Individual de Molécula
4.
Hepatology ; 69(2): 876-888, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30137644

RESUMEN

The fenestrae of liver sinusoidal endothelial cells (LSECs) allow passive transport of solutes, macromolecules, and particulate material between the sinusoidal lumen and the liver parenchymal cells. Until recently, fenestrae and fenestrae-associated structures were mainly investigated using electron microscopy on chemically fixed LSECs. Hence, the knowledge about their dynamic properties has remained to date largely elusive. Recent progress in atomic force microscopy (AFM) has allowed the study of live cells in three dimensions (X, Y, and Z) over a prolonged time (t) and this at unprecedented speeds and resolving power. Hence, we employed the latest advances in AFM imaging on living LSECs. As a result, we were able to monitor the position, size, and number of fenestrae and sieve plates using four-dimensional AFM (X, Y, Z, and t) on intact LSECs in vitro. During these time-lapse experiments, dynamic data were collected on the origin and morphofunctional properties of the filtration apparatus of LSECs. We present structural evidence on single laying and grouped fenestrae, thereby elucidating their dynamic nature from formation to disappearance. We also collected data on the life span of fenestrae. More especially, the formation and closing of entire sieve plates were observed, and how the continuous rearrangement of sieve plates affects the structure of fenestrae within them was recorded. We observed also the dawn and rise of fenestrae-forming centers and defenestration centers in LSECs under different experimental conditions. Conclusion: Utilizing a multimodal biomedical high-resolution imaging technique we collected fine structural information on the life span, formation, and disappearance of LSEC fenestrae; by doing so, we also gathered evidence on three different pathways implemented in the loss of fenestrae that result in defenestrated LSECs.


Asunto(s)
Células Endoteliales/fisiología , Hígado/citología , Animales , Citocalasina B , Depsipéptidos , Ratones , Microscopía de Fuerza Atómica
5.
Pol J Microbiol ; 64(3): 307-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26638541

RESUMEN

This paper presents a description of an experiment in which the survival rate of the probiotic bacteria Lactobacillus acidophilus PCM2499 was increased only due to the presence of Fe3O4 magnetic nanoparticles. The survival rate increased from 1.3 to 10 times compare to the control. It has been shown that the minimum concentration of NPs with a positive effect equals 8 mg/ml and the maximum concentration of the NPs equals 24 mg/ml.


Asunto(s)
Lactobacillus acidophilus/crecimiento & desarrollo , Nanopartículas de Magnetita/química , Viabilidad Microbiana , Probióticos/química , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Lactobacillus acidophilus/química
6.
Redox Biol ; 72: 103162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669864

RESUMEN

Protein disulfide isomerases (PDIs) are involved in many intracellular and extracellular processes, including cell adhesion and cytoskeletal reorganisation, but their contribution to the regulation of fenestrations in liver sinusoidal endothelial cells (LSECs) remains unknown. Given that fenestrations are supported on a cytoskeleton scaffold, this study aimed to investigate whether endothelial PDIs regulate fenestration dynamics in primary mouse LSECs. PDIA3 and PDIA1 were found to be the most abundant among PDI isoforms in LSECs. Taking advantage of atomic force microscopy, the effects of PDIA1 or PDIA3 inhibition on the fenestrations in LSECs were investigated using a classic PDIA1 inhibitor (bepristat) and novel aromatic N-sulfonamides of aziridine-2-carboxylic acid derivatives as PDIA1 (C-3389) or PDIA3 (C-3399) inhibitors. The effect of PDIA1 inhibition on liver perfusion was studied in vivo using dynamic contrast-enhanced magnetic resonance imaging. Additionally, PDIA1 inhibitors were examined in vitro in LSECs for effects on adhesion, cytoskeleton organisation, bioenergetics, and viability. Inhibition of PDIA1 with bepristat or C-3389 significantly reduced the number of fenestrations in LSECs, while inhibition of PDIA3 with C-3399 had no effect. Moreover, the blocking of free thiols by the cell-penetrating N-ethylmaleimide, but not by the non-cell-penetrating 4-chloromercuribenzenesulfonate, resulted in LSEC defenestration. Inhibition of PDIA1 did not affect LSEC adhesion, viability, and bioenergetics, nor did it induce a clear-cut rearrangement of the cytoskeleton. However, PDIA1-dependent defenestration was reversed by cytochalasin B, a known fenestration stimulator, pointing to the preserved ability of LSECs to form new pores. Importantly, systemic inhibition of PDIA1 in vivo affected intra-parenchymal uptake of contrast agent in mice consistent with LSEC defenestration. These results revealed the role of intracellular PDIA1 in the regulation of fenestration dynamics in LSECs, and in maintaining hepatic sinusoid homeostasis.


Asunto(s)
Células Endoteliales , Hígado , Proteína Disulfuro Isomerasas , Animales , Masculino , Ratones , Adhesión Celular , Células Cultivadas , Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Inhibidores Enzimáticos/farmacología , Hígado/metabolismo , Hígado/citología , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/antagonistas & inhibidores
7.
Micron ; 160: 103329, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35934657

RESUMEN

Atomic force microscopy (AFM) and atomic force spectroscopy (AFS) constantly develop to address the detailed description of biophysical changes occurring during cell pathologies. Although AFM is still not a clinical diagnostic tool, it provides invaluable information on the transition of cells from physiological to pathological states. This special issue on "Different approaches to force spectroscopy in the research of cell pathologies" covers some of the latest scientific reports created to bring AFM closer to diagnosing pathology in biological material.


Asunto(s)
Fenómenos Mecánicos , Microscopía de Fuerza Atómica/métodos , Análisis Espectral
8.
Micron ; 161: 103325, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35932629

RESUMEN

The Publisher regrets that this article is an accidental duplication of an article that has already been published in Micron, Volume 161, October 2022, 103325, https://doi.org/10.1016/j.micron.2022.103325. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

9.
Sci Rep ; 12(1): 16276, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175469

RESUMEN

Although complex, the biological processes underlying ischemic stroke are better known than those related to biomechanical alterations of single cells. Mechanisms of biomechanical changes and their relations to the molecular processes are crucial for understanding the function and dysfunction of the brain. In our study, we applied atomic force microscopy (AFM) to quantify the alterations in biomechanical properties in neuroblastoma SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) and reoxygenation (RO). Obtained results reveal several characteristics. Cell viability remained at the same level, regardless of the OGD and RO conditions, but, in parallel, the metabolic activity of cells decreased with OGD duration. 24 h RO did not recover the metabolic activity fully. Cells subjected to OGD appeared softer than control cells. Cell softening was strongly present in cells after 1 h of OGD and with longer OGD duration, and in RO conditions, cells recovered their mechanical properties. Changes in the nanomechanical properties of cells were attributed to the remodelling of actin filaments, which was related to cofilin-based regulation and impaired metabolic activity of cells. The presented study shows the importance of nanomechanics in research on ischemic-related pathological processes such as stroke.


Asunto(s)
Células-Madre Neurales , Neuroblastoma , Factores Despolimerizantes de la Actina , Glucosa , Humanos , Oxígeno
10.
Front Physiol ; 12: 735573, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588998

RESUMEN

The porosity of liver sinusoidal endothelial cells (LSEC) ensures bidirectional passive transport of lipoproteins, drugs and solutes between the liver capillaries and the liver parenchyma. This porosity is realized via fenestrations - transcellular pores with diameters in the range of 50-300 nm - typically grouped together in sieve plates. Aging and several liver disorders severely reduce LSEC porosity, decreasing their filtration properties. Over the years, a variety of drugs, stimulants, and toxins have been investigated in the context of altered diameter or frequency of fenestrations. In fact, any change in the porosity, connected with the change in number and/or size of fenestrations is reflected in the overall liver-vascular system crosstalk. Recently, several commonly used medicines have been proposed to have a beneficial effect on LSEC re-fenestration in aging. These findings may be important for the aging populations of the world. In this review we collate the literature on medicines, recreational drugs, hormones and laboratory tools (including toxins) where the effect LSEC morphology was quantitatively analyzed. Moreover, different experimental models of liver pathology are discussed in the context of fenestrations. The second part of this review covers the cellular mechanisms of action to enable physicians and researchers to predict the effect of newly developed drugs on LSEC porosity. To achieve this, we discuss four existing hypotheses of regulation of fenestrations. Finally, we provide a summary of the cellular mechanisms which are demonstrated to tune the porosity of LSEC.

11.
Biophys Rev ; 12(3): 625-636, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32424787

RESUMEN

The structural-functional hallmark of the liver sinusoidal endothelium is the presence of fenestrae grouped in sieve plates. Fenestrae are open membrane bound pores supported by a (sub)membranous cytoskeletal lattice. Changes in number and diameter of fenestrae alter bidirectional transport between the sinusoidal blood and the hepatocytes. Their physiological relevance has been shown in different liver disease models. Although the structural organization of fenestrae has been well documented using different electron microscopy approaches, the dynamic nature of those pores remained an enigma until the recent developments in the research field of four dimensional (4-D) AFM. In this contribution we highlight how AFM as a biophysical nanocharacterization tool enhanced our understanding in the dynamic behaviour of liver sinusoidal endothelial fenestrae. Different AFM probing approaches, including spectroscopy, enabled mapping of topography and nanomechanical properties at unprecedented resolution under live cell imaging conditions. This dynamic biophysical characterization approach provided us with novel information on the 'short' life-span, formation, disappearance and closure of hepatic fenestrae. These observations are briefly reviewed against the existing literature.

12.
Redox Biol ; 34: 101572, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32487458

RESUMEN

The breach of proteostasis, leading to the accumulation of protein aggregates, is a hallmark of ageing and age-associated disorders, up to now well-established in neurodegeneration. Few studies have addressed the issue of dysfunctional cell response to protein deposition also for the cardiovascular system. However, the molecular basis of proteostasis decline in vascular cells, as well as its relation to ageing, are not understood. Recent studies have indicated the associations of Nrf2 transcription factor, the critical modulator of cellular stress-response, with ageing and premature senescence. In this report, we outline the significance of protein aggregation in physiological and premature ageing of murine and human endothelial cells (ECs). Our study shows that aged donor-derived and prematurely senescent Nrf2-deficient primary human ECs, but not those overexpressing dominant-negative Nrf2, exhibit increased accumulation of protein aggregates. Such phenotype is also found in the aortas of aged mice and young Nrf2 tKO mice. Ageing-related loss of proteostasis in ECs depends on Keap1, well-known repressor of Nrf2, recently perceived as a key independent regulator of EC function and protein S-nitrosation (SNO). Deposition of protein aggregates in ECs is associated with impaired autophagy. It can be counteracted by Keap1 depletion, S-nitrosothiol reductant or rapamycin treatment. Our results show that Keap1:Nrf2 protein balance and Keap1-dependent SNO predominate Nrf2 transcriptional activity-driven mechanisms in governing proteostasis in ageing ECs.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Agregado de Proteínas , Envejecimiento/genética , Animales , Células Endoteliales/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
13.
Front Physiol ; 10: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809151

RESUMEN

Healthy liver sinusoidal endothelial cells (LSECs) maintain liver homeostasis, while LSEC dysfunction was suggested to coincide with defenestration. Here, we have revisited the relationship between LSEC pro-inflammatory response, defenestration, and impairment of LSEC bioenergetics in non-alcoholic fatty liver disease (NAFLD) in mice. We characterized inflammatory response, morphology as well as bioenergetics of LSECs in early and late phases of high fat diet (HFD)-induced NAFLD. LSEC phenotype was evaluated at early (2-8 week) and late (15-20 week) stages of NAFLD progression induced by HFD in male C57Bl/6 mice. NAFLD progression was monitored by insulin resistance, liver steatosis and obesity. LSEC phenotype was determined in isolated, primary LSECs by immunocytochemistry, mRNA gene expression (qRT-PCR), secreted prostanoids (LC/MS/MS) and bioenergetics (Seahorse FX Analyzer). LSEC morphology was examined using SEM and AFM techniques. Early phase of NAFLD, characterized by significant liver steatosis and prominent insulin resistance, was related with LSEC pro-inflammatory phenotype as evidenced by elevated ICAM-1, E-selectin and PECAM-1 expression. Transiently impaired mitochondrial phosphorylation in LSECs was compensated by increased glycolysis. Late stage of NAFLD was featured by prominent activation of pro-inflammatory LSEC phenotype (ICAM-1, E-selectin, PECAM-1 expression, increased COX-2, IL-6, and NOX-2 mRNA expression), activation of pro-inflammatory prostaglandins release (PGE2 and PGF2α) and preserved LSEC bioenergetics. Neither in the early nor in the late phase of NAFLD, were LSEC fenestrae compromised. In the early and late phases of NAFLD, despite metabolic and pro-inflammatory burden linked to HFD, LSEC fenestrae and bioenergetics are functionally preserved. These results suggest prominent adaptive capacity of LSECs that might mitigate NAFLD progression.

15.
Micron ; 101: 48-53, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28623691

RESUMEN

Liver sinusoidal endothelial cells present unique morphology characterized by the presence of transmembrane pores called fenestrations. The size and number of fenestrations in live cells change dynamically in response to variety of chemical and physical factors. Although scanning electron microscopy is a well-established method for investigation of fixed liver sinusoidal endothelial cells morphology, atomic force microscopy is the interesting alternative providing detailed 3D topographical information. Moreover, simple sample preparation, only by wet-fixation, minimizing sample preparation artifacts enable high-resolution atomic force microscopy-based measurements. In this work, we apply imaging methods based on atomic force microscopy, to describe characteristic features of glutaraldehyde-fixed primary murine liver sinusoidal endothelial cells, namely: mean fenestration diameter, porosity, and fenestrations frequency. We also investigate the effect of different tip apex radius on evaluation of single fenestration diameter. By quantitative description of fenestrations, we demonstrate that atomic force microscopy became a well competing tool for nondestructive quantitative investigation of the liver sinusoidal endothelial cell morphology.


Asunto(s)
Capilares/citología , Células Endoteliales/fisiología , Células Endoteliales/ultraestructura , Hígado/irrigación sanguínea , Microscopía de Fuerza Atómica , Animales , Biometría , Imagenología Tridimensional , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA