Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Molecules ; 29(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38893493

RESUMEN

GSK-3ß, IKK-ß, and ROCK-1 kinases are implicated in the pathomechanism of Alzheimer's disease due to their involvement in the misfolding and accumulation of amyloid ß (Aß) and tau proteins, as well as inflammatory processes. Among these kinases, GSK-3ß plays the most crucial role. In this study, we present compound 62, a novel, remarkably potent, competitive GSK-3ß inhibitor (IC50 = 8 nM, Ki = 2 nM) that also exhibits additional ROCK-1 inhibitory activity (IC50 = 2.3 µM) and demonstrates anti-inflammatory and neuroprotective properties. Compound 62 effectively suppresses the production of nitric oxide (NO) and pro-inflammatory cytokines in the lipopolysaccharide-induced model of inflammation in the microglial BV-2 cell line. Furthermore, it shows neuroprotective effects in an okadaic-acid-induced tau hyperphosphorylation cell model of neurodegeneration. The compound also demonstrates the potential for further development, characterized by its chemical and metabolic stability in mouse microsomes and fair solubility.


Asunto(s)
Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 beta , Quinasa I-kappa B , Tiazoles , Quinasas Asociadas a rho , Proteínas tau , Proteínas tau/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Tiazoles/farmacología , Tiazoles/química , Humanos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Ratones , Quinasa I-kappa B/metabolismo , Quinasa I-kappa B/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Línea Celular , Antiinflamatorios/farmacología , Antiinflamatorios/química , Microglía/efectos de los fármacos , Microglía/metabolismo , Óxido Nítrico/metabolismo , Lipopolisacáridos , Agregado de Proteínas/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo
2.
Bioorg Med Chem ; 88-89: 117333, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37236021

RESUMEN

Butyrylcholinesterase (BuChE) and amyloid ß (Aß) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aß inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aß aggregation inhibition at 10 µM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Acetilcolinesterasa/metabolismo , Diseño de Fármacos , Estructura Molecular , Simulación del Acoplamiento Molecular
3.
Molecules ; 28(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067591

RESUMEN

BACKGROUND: Neuropathic pain is drug-resistant to available analgesics and therefore novel treatment options for this debilitating clinical condition are urgently needed. Recently, two drug candidates, namely mirogabalin and cebranopadol have become a subject of interest because of their potential utility as analgesics for chronic pain treatment. However, they have not been investigated thoroughly in some types of neuropathic pain, both in humans and experimental animals. METHODS: This study used the von Frey test, the hot plate test and the two-plate thermal place preference test supported by image analysis and machine learning to assess the effect of intraperitoneal mirogabalin and subcutaneous cebranopadol on mechanical and thermal nociceptive threshold in mouse models of neuropathic pain induced by streptozotocin, paclitaxel and oxaliplatin. RESULTS: Mirogabalin and cebranopadol effectively attenuated tactile allodynia in models of neuropathic pain induced by streptozotocin and paclitaxel. Cebranopadol was more effective than mirogabalin in this respect. Both drugs also elevated the heat nociceptive threshold in mice. In the oxaliplatin model, cebranopadol and mirogabalin reduced cold-exacerbated pain. CONCLUSIONS: Since mirogabalin and cebranopadol are effective in animal models of neuropathic pain, they seem to be promising novel therapies for various types of neuropathic pain in patients, in particular those who are resistant to available analgesics.


Asunto(s)
Neuralgia , Nocicepción , Ratones , Humanos , Animales , Oxaliplatino/uso terapéutico , Estreptozocina , Analgésicos/farmacología , Analgésicos/uso terapéutico , Neuralgia/tratamiento farmacológico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico
4.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903593

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Receptores Histamínicos H3 , Humanos , Histamina , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Inhibidores de la Colinesterasa/química , Receptores Histamínicos , Monoaminooxidasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Monoaminooxidasa/farmacología , Ligandos
5.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142287

RESUMEN

Heart rhythm abnormalities are a cause of many deaths worldwide. Unfortunately, the available antiarrhythmic drugs show limited efficacy and proarrhythmic potential. Thus, efforts should be made to search for new, more effective, and safer pharmacotherapies. Several studies suggested that blocking the α1-adrenoceptors could restore normal heart rhythm in arrhythmia. In this study, we aimed to assess the antiarrhythmic potential of S-61 and S-73, two novel pyrrolidin-2-one derivatives with high affinity for α1-adrenergic receptors. First, using radioligand binding studies, we demonstrated that S-61 and S-73 did not bind with ß1-adrenoceptors. Next, we assessed whether S-61 and S-73 could protect rats against arrhythmia in adrenaline-, calcium chloride- and aconitine-induced arrhythmia models. Both compounds showed potent prophylactic antiarrhythmic properties in the adrenaline-induced arrhythmia model, but the effect of S-61 was more pronounced. None of the compounds displayed antiarrhythmic effects in calcium chloride- or aconitine-induced arrhythmia models. Interestingly, both derivatives revealed therapeutic antiarrhythmic activity in the adrenaline-induced arrhythmia, diminishing heart rhythm irregularities. Neither S-61 nor S-73 showed proarrhythmic potential in rats. Finally, the compounds decreased blood pressure in rodents. The hypotensive effects were not observed after coadministration with methoxamine, which suggests the α1-adrenolytic properties of both compounds. Our results confirm that pyrrolidin-2-one derivatives possess potent antiarrhythmic properties. Given the promising results of our experiments, further studies on pyrrolidin-2-one derivatives might result in the development of a new class of antiarrhythmic drugs.


Asunto(s)
Antiarrítmicos , Antihipertensivos , Aconitina/efectos adversos , Antagonistas Adrenérgicos , Animales , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Antihipertensivos/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/prevención & control , Cloruro de Calcio , Epinefrina/farmacología , Epinefrina/uso terapéutico , Metoxamina , Pirrolidinonas/farmacología , Ratas , Ratas Wistar , Receptores Adrenérgicos alfa 1 , Receptores Adrenérgicos beta 1
6.
Molecules ; 28(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36615435

RESUMEN

The multitarget-directed ligands demonstrating affinity to histamine H3 receptor and additional cholinesterase inhibitory potency represent a promising strategy for research into the effective treatment of Alzheimer's disease. In this study, a novel series of benzophenone derivatives was designed and synthesized. Among these derivatives, we identified compound 6 with a high affinity for H3R (Ki = 8 nM) and significant inhibitory activity toward BuChE (IC50 = 172 nM and 1.16 µM for eqBuChE and hBuChE, respectively). Further in vitro studies revealed that compound 6 (4-fluorophenyl) (4-((5-(piperidin-1-yl)pentyl)oxy)phenyl)methanone) displays moderate metabolic stability in mouse liver microsomes, good permeability with a permeability coefficient value (Pe) of 6.3 × 10-6 cm/s, and its safety was confirmed in terms of hepatotoxicity in the HepG2 cell line. Therefore, we investigated the in vivo activity of compound 6 in the Passive Avoidance Test and the Formalin Test. While compound 6 did not show a statistically significant influence on memory and learning, it showed analgesic properties in both acute (ED50 = 20.9 mg/kg) and inflammatory (ED50 = 17.5 mg/kg) pain.


Asunto(s)
Enfermedad de Alzheimer , Receptores Histamínicos H3 , Ratones , Animales , Colinesterasas/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Histamina , Receptores Histamínicos H3/metabolismo , Inhibidores de la Colinesterasa/farmacología , Receptores Histamínicos , Ligandos , Relación Estructura-Actividad
7.
Bioorg Chem ; 114: 105129, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34217977

RESUMEN

Alzheimer's disease (AD) is a complex and incurable illness that requires the urgent approval of new effective drugs. However, since 2003, no new molecules have shown successful results in clinical trials, thereby making the common "one compound - one target" paradigm questionable. Recently, the multitarget-directed ligand (MTDL) approach has gained popularity, as compounds targeting at least two biological targets may be potentially more effective in treating AD. On the basis of these findings, we designed, synthesized, and evaluated through biological assays a series of derivatives of alicyclic amines linked by an alkoxy bridge to an aromatic lipophilic moiety of [1,1'-biphenyl]-4-carbonitrile. The research results revealed promising biological activity of the obtained compounds toward the chosen targets involved in AD pathophysiology; the compounds showed high affinity (mostly low nanomolar range of Ki values) for human histamine H3 receptors (hH3R) and good nonselective inhibitory potency (micromolar range of IC50 values) against acetylcholinesterase from electric eel (eeAChE) and equine serum butyrylcholinesterase (eqBuChE). Moreover, micromolar/submicromolar potency against human monoamine oxidase B (hMAO B) was detected for some compounds. The study identified compound 5 as a multiple hH3R/eeAChE/eqBuChE/hMAO B ligand (5: hH3R Ki = 9.2 nM; eeAChE IC50 = 2.63 µM; eqBuChE IC50 = 1.30 µM; hMAO B IC50 = 0.60 µM). Further in vitro studies revealed that compound 5 exhibits a mixed type of eeAChE and eqBuChE inhibition, good metabolic stability, and moderate hepatotoxicity effect on HepG2 cells. Finally, compound 5 showed a beneficial effect on scopolamine-induced memory impairments, as assessed by the passive avoidance test, thus revealing the potential of this compound as a promising agent for further optimization for AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Compuestos de Bifenilo/farmacología , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Receptores Histamínicos H3/metabolismo , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Caballos , Humanos , Ligandos , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad
8.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208297

RESUMEN

Neurodegenerative diseases, e.g., Alzheimer's disease (AD), are a key health problem in the aging population. The lack of effective therapy and diagnostics does not help to improve this situation. It is thought that ligands influencing multiple but interconnected targets can contribute to a desired pharmacological effect in these complex illnesses. Histamine H3 receptors (H3Rs) play an important role in the brain, influencing the release of important neurotransmitters, such as acetylcholine. Compounds blocking their activity can increase the level of these neurotransmitters. Cholinesterases (acetyl- and butyrylcholinesterase) are responsible for the hydrolysis of acetylcholine and inactivation of the neurotransmitter. Increased activity of these enzymes, especially butyrylcholinesterase (BuChE), is observed in neurodegenerative diseases. Currently, cholinesterase inhibitors: donepezil, rivastigmine and galantamine are used in the symptomatic treatment of AD. Thus, compounds simultaneously blocking H3R and inhibiting cholinesterases could be a promising treatment for AD. Herein, we describe the BuChE inhibitory activity of H3R ligands. Most of these compounds show high affinity for human H3R (Ki < 150 nM) and submicromolar inhibition of BuChE (IC50 < 1 µM). Among all the tested compounds, 19 (E153, 1-(5-([1,1'-biphenyl]-4-yloxy)pentyl)azepane) exhibited the most promising in vitro affinity for human H3R, with a Ki value of 33.9 nM, and for equine serum BuChE, with an IC50 of 590 nM. Moreover, 19 (E153) showed inhibitory activity towards human MAO B with an IC50 of 243 nM. Furthermore, in vivo studies using the Passive Avoidance Task showed that compound 19 (E153) effectively alleviated memory deficits caused by scopolamine. Taken together, these findings suggest that compound 19 can be a lead structure for developing new anti-AD agents.


Asunto(s)
Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Aminas/química , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Monoaminooxidasa/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Butirilcolinesterasa/metabolismo , Línea Celular , Inhibidores de la Colinesterasa/síntesis química , Humanos , Ligandos , Masculino , Ratones , Modelos Animales , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa/metabolismo , Receptores Histamínicos H3/química , Relación Estructura-Actividad
9.
J Enzyme Inhib Med Chem ; 35(1): 1944-1952, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33092411

RESUMEN

Effective therapy of Alzheimer's disease (AD) requires treatment with a combination of drugs that modulate various pathomechanisms contributing to the disease. In our research, we have focused on the development of multi-target-directed ligands - 5-HT6 receptor antagonists and cholinesterase inhibitors - with disease-modifying properties. We have performed extended in vitro (FRET assay) and in cellulo (Escherichia coli model of protein aggregation) studies on their ß-secretase, tau, and amyloid ß aggregation inhibitory activity. Within these multifunctional ligands, we have identified compound 17 with inhibitory potency against tau and amyloid ß aggregation in in cellulo assay of 59% and 56% at 10 µM, respectively, hBACE IC50=4 µM, h5TH6 K i=94 nM, hAChE IC50=26 nM, and eqBuChE IC50=5 nM. This study led to the development of multifunctional ligands with a broad range of biological activities crucial not only for the symptomatic but also for the disease-modifying treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/química , Colinesterasas/metabolismo , Receptores de Serotonina/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/prevención & control , Inhibidores de la Colinesterasa/metabolismo , Diseño de Fármacos , Escherichia coli , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Modelos Moleculares , Agregado de Proteínas , Relación Estructura-Actividad
10.
Bioorg Chem ; 90: 103084, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31271942

RESUMEN

In the search for new treatments for complex disorders such as Alzheimer's disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood-brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 µM), and BuChE (IC50 = 14.62 µM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Amnesia/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Modelos Animales de Enfermedad , Piperazinas/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterasa/química , Adyuvantes Anestésicos/toxicidad , Amnesia/inducido químicamente , Animales , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Biología Computacional , Técnicas In Vitro , Ligandos , Masculino , Ratones , Modelos Moleculares , Estructura Molecular , Receptores Histamínicos H3/química , Escopolamina/toxicidad , Relación Estructura-Actividad
11.
J Endocrinol Invest ; 41(5): 609-619, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29110282

RESUMEN

PURPOSE: Previous studies have shown that several components of the metabolic syndrome, such as hypertension, obesity or imbalanced lipid and carbohydrate homeostasis, are associated with the sympathetic nervous system overactivity. Therefore, the inhibition of the adrenergic nervous system seems to be a reasonable and appropriate therapeutic approach for the treatment of metabolic disturbances. It has been suggested that non-selective adrenoceptor antagonists could be particularly beneficial, since α1-adrenoceptor antagonists can improve disrupted lipid and carbohydrate profiles, while the inhibition of the α2-adrenoceptor may contribute to body weight reduction. The aim of the present study was to investigate the metabolic benefits deriving from administration of a non-selective α-adrenoceptor antagonist from the group of pyrrolidin-2-one derivatives. The aim of the present study was to investigate the potential metabolic benefits deriving from chronic administration of a non-selective α-adrenoceptor antagonist, from the group of pyrrolidin-2-one derivatives. METHODS: The α1- and α2-adrenoreceptor affinities of the tested compound-1-(3-(4-(o-tolyl)piperazin-1-yl)propyl)pyrrolidin-2-one had been investigated previously by means of the radioligand binding assay. In the present study, we extended the pharmacological profile characteristics of the selected molecule by additional intrinistic activity assays. Next, we investigated the influence of the tested compound on body weight, hyperglycemia, hypertriglyceridemia, blood pressure in the animal model of obesity induced by a high-fat diet, and additionally we measured the spontaneous activity and body temperature. RESULTS: The intrinistic activity studies revealed that the tested compound is a potent, non-selective antagonist of α1B and α2A-adrenoceptors. After the chronic administration of the tested compound, we observed reduced level of triglycerides and glucose in the rat plasma. Interestingly, the tested did not reduce the body weight and did not influence the blood pressure in normotensive animals. Additionally, the administration of the tested compound did not change the animals' spontaneous activity and body temperature. CONCLUSION: Non-selective α-adrenoceptor antagonist seems to carry potential benefits in the improvement of the reduction of elevated glucose and triglyceride level. The lack of influence on blood pressure suggests that compounds with such a pharmacological profile may be particulary beneficial for the patients with disturbed lipid and carbohydrate profile, who do not suffer from hypertension. These results are particulary valuable, since currently there are no safe α2A-adrenoceptor antagonist drugs available in clinical use with the ability to modulate hyperglycemia that would not affect blood pressure.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Presión Sanguínea/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Piperazinas/química , Pirrolidinas/farmacología , Receptores Adrenérgicos alfa 1/química , Animales , Dieta Alta en Grasa/efectos adversos , Locomoción/efectos de los fármacos , Masculino , Obesidad/etiología , Piperazina , Piperazinas/farmacología , Pirrolidinas/química , Ensayo de Unión Radioligante , Ratas , Ratas Wistar
12.
Bioorg Med Chem ; 23(9): 2104-11, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25813897

RESUMEN

This study focused on a series of pyrrolidin-2-one derivatives connected via two or four methylene units to arylpiperazine fragment. The compounds obtained for α1- and α2-adrenoceptors were assessed. The compound with highest affinity for the α1-adrenoceptors was 1-{4-[4-(2-chloro-phenyl)-piperazin-1-yl]-butyl}-pyrrolidin-2-one (10 h) with pKi=7.30. Compound with pKi (α1) ⩾6.44 were evaluated in functional bioassays for intrinsic activity at α1A- and α1B-adrenoceptors. All compounds tested were antagonists of the α1B-adrenoceptors. Additionally, compounds 10e and 10h were α1A-adrenoceptors antagonist. The dual α1A-/α1B-adrenoceptors antagonists, compounds 10e and 10h were also tested in vivo for their hypotensive activity in rats. These compounds, when dosed of 1.0 mg/kg iv in normotensive, anesthetized rats, significantly decreased systolic and diastolic pressure and their hypotensive effects lasted for longer than one hour.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/química , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Hipotensión/inducido químicamente , Piperazinas/farmacología , Pirrolidinonas/química , Pirrolidinonas/farmacología , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/síntesis química , Animales , Relación Dosis-Respuesta a Droga , Masculino , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/química , Ratas , Ratas Wistar , Relación Estructura-Actividad
13.
Arch Pharm (Weinheim) ; 348(12): 861-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26523954

RESUMEN

In an effort to develop α-adrenoceptor antagonists with antiarrhythmic activity, we designed a series of pyrrolidin-2-one derivatives. The α1- and α2-adrenorecepor affinities of the new pyrrolidin-2-one derivatives were determined using a radioligand binding assay. The most active compound was then tested in vitro for intrinsic activity toward α(1A)- and α(1B)-adrenoceptors and in vitro for antiarrhythmic activity in epinephrine-induced arrhythmia in rats. The highest affinity for the α1-adrenoceptor (pK(i) = 7.01) was displayed by 1-{4-[4-(2-methoxy-5-chlorophenyl)-piperazin-1-yl]-methyl}-pyrrolidin-2-one (9). 1-[4-(2-Fluorophenyl)-piperazin-1-yl]-methyl-pyrrolidin-2-one (7) showed the highest affinity toward the α2-adrenoceptor (pK(i) = 6.52). Intrinsic activity studies of compound 9 showed that this compound is an antagonist of both α(1A)- (EC50 = 0.5 nM) and α(1B)- (EC50 = 51.0 nM) adrenoceptors. Compound 9 displayed antiarrhythmic activity in rats (ED50 = 5.0 mg/kg (3.13-7.99)). New derivatives of pyrrolidin-2-one with α1 -adrenoceptor affinity were identified. We propose that the antiarrhythmic activity of compound 9 is related to its antagonism of α(1A)- and α(1B)-adrenoceptors.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Antiarrítmicos/farmacología , Arritmias Cardíacas/prevención & control , Piperazinas/farmacología , Pirrolidinonas/farmacología , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Antagonistas de Receptores Adrenérgicos alfa 1/síntesis química , Antagonistas de Receptores Adrenérgicos alfa 1/metabolismo , Animales , Antiarrítmicos/síntesis química , Antiarrítmicos/metabolismo , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Diseño de Fármacos , Epinefrina , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/metabolismo , Unión Proteica , Pirrolidinonas/síntesis química , Pirrolidinonas/metabolismo , Ensayo de Unión Radioligante , Ratas Wistar , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Relación Estructura-Actividad , Transfección
14.
Eur J Med Chem ; 249: 115135, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36696766

RESUMEN

The symptomatic and disease-modifying effects of butyrylcholinesterase (BuChE) inhibitors provide an encouraging premise for researching effective treatments for Alzheimer's disease. Here, we examined a series of compounds with a new chemical scaffold based on 3-(cyclohexylmethyl)amino-2-hydroxypropyl, and we identified a highly selective hBuChE inhibitor (29). Based on extensive in vitro and in vivo evaluations of the compound and its enantiomers, (R)-29 was identified as a promising candidate for further development. Compound (R)-29 is a potent hBuChE inhibitor (IC50 = 40 nM) with selectivity over AChE and relevant off-targets, including H1, M1, α1A and ß1 receptors. The compound displays high metabolic stability on human liver microsomes (90% of the parent compound after 2 h of incubation), and its safety was confirmed through examining the cytotoxicity on the HepG2 cell line (LC50 = 2.85 µM) and hERG inhibition (less than 50% at 10 µM). While (rac)-29 lacked an effect in vivo and showed limited penetration to the CNS in pharmacokinetics studies, compound (R)-29 exhibited a procognitive effect at 15 mg/kg in the passive avoidance task in scopolamine-treated mice.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Ratones , Animales , Humanos , Butirilcolinesterasa/metabolismo , Cristalografía , Inhibidores de la Colinesterasa/química , Enfermedad de Alzheimer/metabolismo , Escopolamina/farmacología , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
15.
Eur J Med Chem ; 261: 115832, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37837674

RESUMEN

Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), ß-secretase (BACE1), amyloid ß aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 µM, mGAT4 IC50 = 12 µM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aß40 aggregation inhibitory activity (IC50 = 1.57 µM and 99 % at 10 µM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 µM), Aß aggregation (79 % at 10 µM) and mGATs (mGAT1 IC50 = 30 µM, mGAT4 IC50 = 25 µM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Ratones , Animales , Butirilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Diseño de Fármacos , Ácido Aspártico Endopeptidasas/metabolismo , Acetilcolinesterasa/metabolismo
16.
Curr Med Chem ; 28(4): 750-776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31612818

RESUMEN

Neurotransmitter γ-aminobutyric acid (GABA) plays a principal role in the regulation of mammalian central nervous system functions. GABA evoked neurotransmission is terminated by a rapid uptake via dependent plasma membrane GABA transporters (GATs) located in the cell membrane. Potent inhibitors of these GATs are of fundamental importance for elucidation of the physiological function of these targets. Over recent years, a wide range of new GAT1-selective and less common non-GAT1-selective inhibitors have been successfully developed. This review highlights development and recent significant achievements in the field of GABA reuptake inhibitors. Special attention is paid to their pharmacological roles, structure and subtype selectivity relationships.


Asunto(s)
Inhibidores de Recaptación de GABA , Ácido gamma-Aminobutírico , Animales , Transporte Biológico , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo
17.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34832847

RESUMEN

Arrhythmia is a quivering or irregular heartbeat that can often lead to blood clots, stroke, heart failure, and other heart-related complications. The limited efficacy and safety of antiarrhythmic drugs require the design of new compounds. Previous research indicated that pyrrolidin-2-one derivatives possess an affinity for α1-adrenergic receptors. The blockade of α1-adrenoceptor may play a role in restoring normal sinus rhythm; therefore, we aimed to verify the antiarrhythmic activity of novel pyrrolidin-2-one derivative S-75. In this study, we assessed the influence on sodium, calcium, potassium channels, and ß1-adrenergic receptors to investigate the mechanism of action of S-75. Lack of affinity for ß1-adrenoceptors and weak effects on ion channels decreased the role of these adrenoceptors and channels in the pharmacological activity of S-75. Next, we evaluated the influence of S-75 on normal ECG in rats and isolated rat hearts, and the tested derivative did not prolong the QTc interval, which may confirm the lack of the proarrhythmic potential. We tested antiarrhythmic activity in adrenaline-, aconitine- and calcium chloride-induced arrhythmia models in rats. The studied compound showed prophylactic antiarrhythmic activity in the adrenaline-induced arrhythmia, but no significant activity in the model of aconitine- or calcium chloride-induced arrhythmia. In addition, S-75 was not active in the model of post-reperfusion arrhythmias of the isolated rat hearts. Conversely, the compound showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia, reducing post-arrhythmogen heart rhythm disorders, and decreasing animal mortality. Thus, we suggest that the blockade of α1-adrenoceptor might be beneficial in restoring normal heart rhythm in adrenaline-induced arrhythmia.

18.
ACS Chem Neurosci ; 12(16): 3073-3100, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34347423

RESUMEN

Neuropathic pain resistance to pharmacotherapy has encouraged researchers to develop effective therapies for its treatment. γ-Aminobutyric acid (GABA) transporters 1 and 4 (mGAT1 and mGAT4) have been increasingly recognized as promising drug targets for neuropathic pain (NP) associated with imbalances in inhibitory neurotransmission. In this context, we designed and synthesized new functionalized amino acids as inhibitors of GABA uptake and assessed their activities toward all four mouse GAT subtypes (mGAT1-4). According to the obtained results, compounds 2RS,4RS-39c (pIC50 (mGAT4) = 5.36), 50a (pIC50 (mGAT2) = 5.43), and 56a (with moderate subtype selectivity that favored mGAT4, pIC50 (mGAT4) = 5.04) were of particular interest and were therefore evaluated for their cytotoxic and hepatotoxic effects. In a set of in vivo experiments, both compounds 50a and 56a showed antinociceptive properties in three rodent models of NP, namely, chemotherapy-induced neuropathic pain models (the oxaliplatin model and the paclitaxel model) and the diabetic neuropathic pain model induced by streptozotocin; however compound 56a demonstrated predominant activity. Since impaired motor coordination is also observed in neuropathic pain conditions, we have pointed out that none of the test compounds induced motor deficits in the rotarod test.


Asunto(s)
Aminoácidos , Neuralgia , Analgésicos/farmacología , Animales , Proteínas Transportadoras de GABA en la Membrana Plasmática , Ratones , Neuralgia/tratamiento farmacológico , Ácido gamma-Aminobutírico
19.
Eur J Med Chem ; 221: 113512, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015586

RESUMEN

γ-Aminobutyric acid (GABA) neurotransmission has a significant impact on the proper functioning of the central nervous system. Numerous studies have indicated that inhibitors of the GABA transporters mGAT1-4 offer a promising strategy for the treatment of several neurological disorders, including epilepsy, neuropathic pain, and depression. Following our previous results, herein, we report the synthesis, biological evaluation, and structure-activity relationship studies supported by molecular docking and molecular dynamics of a new series of N-benzyl-4-hydroxybutanamide derivatives regarding their inhibitory potency toward mGAT1-4. This study allowed us to identify compound 23a (N-benzyl-4-hydroxybutanamide bearing a dibenzocycloheptatriene moiety), a nonselective GAT inhibitor with a slight preference toward mGAT4 (pIC50 = 5.02 ± 0.11), and compound 24e (4-hydroxy-N-[(4-methylphenyl)-methyl]butanamide bearing a dibenzocycloheptadiene moiety) with relatively high inhibitory activity toward mGAT2 (pIC50 = 5.34 ± 0.09). In a set of in vivo experiments, compound 24e successively showed predominant anticonvulsant activity and antinociception in the formalin model of tonic pain. In contrast, compound 23a showed significant antidepressant-like properties in mice. These results were consistent with the available literature data, which indicates that, apart from seizure control, GABAergic neurotransmission is also involved in the pathophysiology of several psychiatric diseases, however alternative mechanisms underlying this action cannot be excluded. Finally, it is worth noting that the selected compounds showed unimpaired locomotor skills that have been indicated to give reliable results in behavioral assays.


Asunto(s)
Amidas/farmacología , Analgésicos/farmacología , Anticonvulsivantes/farmacología , Antidepresivos/farmacología , Desarrollo de Medicamentos , Inhibidores de Recaptación de GABA/farmacología , Amidas/síntesis química , Amidas/química , Analgésicos/síntesis química , Analgésicos/química , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Antidepresivos/síntesis química , Antidepresivos/química , Relación Dosis-Respuesta a Droga , Inhibidores de Recaptación de GABA/síntesis química , Inhibidores de Recaptación de GABA/química , Humanos , Estructura Molecular , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/metabolismo , Relación Estructura-Actividad
20.
Eur J Med Chem ; 188: 111920, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31901745

RESUMEN

γ-Aminobutyric acid (GABA) uptake transporters are membrane transport proteins that are involved in the pathophysiology of a number of neurological disorders. Some types of chronic pain appear to result from the dysfunction of the GABAergic system. The deficiency of mouse GAT1 transporter (mGAT1) abolishes the nociceptive response, which means that mGAT1 inhibition is an appropriate medical approach to achieve analgesia. The mGAT4 transporter is the second most abundant GAT subtype in the brain; however, its physiological role has not yet been fully understood in the central nervous system. In this study, we examined whether the combination of mGAT1 and mGAT3/mGAT4 inhibition in a single molecule might lead to potentially synergistic effects improving analgesic activity to relieve neuropathic pain. To study this hypothesis, new GABA uptake inhibitors were designed, synthesized, and evaluated in terms of their activity and subtype selectivity for mGAT1-4. Among new functionalized amino acid derivatives of serine and GABA analogs, compounds with preferential mGAT3/4 inhibitory activity were discovered. Two selected hits (19b and 31c) were subjected to in vivo tests. We found a statistically significant antiallodynic activity in the von Frey test in diabetic and oxaliplatin-induced neuropathic pain model. The novel compounds (4-hydroxybutanoic, 4-hydroxypentanoic, and 4-aminobutanoic acid derivatives and serine analogs) provide new insights into the structure-activity relationship of mGAT3/mGAT4 inhibitors and indicate a new direction in the search for potential treatment of neuropathic pain of various origin.


Asunto(s)
Analgésicos/uso terapéutico , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inhibidores de Recaptación de GABA/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Umbral del Dolor/efectos de los fármacos , Analgésicos/síntesis química , Analgésicos/metabolismo , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Inhibidores de Recaptación de GABA/síntesis química , Inhibidores de Recaptación de GABA/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/etiología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Neuralgia/inducido químicamente , Neuralgia/etiología , Oxaliplatino , Unión Proteica , Estreptozocina , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA