Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 20(1): 55-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420736

RESUMEN

The highly reproducible inheritance of chromosomes during mitosis in mammalian cells involves nuclear envelope breakdown, increased chromatin compaction, loss of long-range intrachromosomal interactions, loss of enhancer-promoter proximity, displacement of many transcription regulators from the chromatin and a marked decrease in RNA synthesis. Despite these dramatic changes in the mother cell, daughter cells are able to faithfully re-establish the parental chromatin and gene expression features characteristic of the cell type. Pioneering studies of mitotic chromatin signatures showed that despite global repression of transcription, the Hsp70 gene promoter retains an open chromatin conformation, which was proposed to allow the reactivation of the Hsp70 gene upon completion of mitosis - a phenomenon termed mitotic bookmarking. It was later shown that various cell-type-specific transcription factors, such as GATA-binding factor 1 (GATA1) in erythroblasts and forkhead box protein A1 (FOXA1) in hepatocytes, remain bound at a subset of their interphase binding sites in mitosis. Such bookmarking transcription factors remain on chromosomes in mitosis and have been shown to enable a subset of genes to be reactivated in a timely fashion upon mitotic exit. In addition, sensitive new methods to measure transcription revealed that mitotic cells retain residual transcription at a large number of genes. Furthermore, genes recover their interphase level of transcription in distinct waves. Thus, gene expression is precisely regulated as cells pass through mitosis to ensure faithful propagation of cell identity and function through cellular generations.


Asunto(s)
Memoria/fisiología , Mitosis/genética , Transcripción Genética/genética , Animales , Cromatina/genética , Cromosomas/genética , Regulación de la Expresión Génica/genética , Humanos , Factores de Transcripción/genética
2.
Cell ; 161(3): 555-568, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25892221

RESUMEN

Pioneer transcription factors (TFs) access silent chromatin and initiate cell-fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein, we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naive chromatin sites.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Desdiferenciación Celular , ADN/metabolismo , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Modelos Moleculares , Motivos de Nucleótidos , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/clasificación
3.
Annu Rev Genet ; 54: 367-385, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32886547

RESUMEN

Pioneer transcription factors have the intrinsic biochemical ability to scan partial DNA sequence motifs that are exposed on the surface of a nucleosome and thus access silent genes that are inaccessible to other transcription factors. Pioneer factors subsequently enable other transcription factors, nucleosome remodeling complexes, and histone modifiers to engage chromatin, thereby initiating the formation of an activating or repressive regulatory sequence. Thus, pioneer factors endow the competence for fate changes in embryonic development, are essential for cellular reprogramming, and rewire gene networks in cancer cells. Recent studies with reconstituted nucleosomes in vitro and chromatin binding in vivo reveal that pioneer factors can directly perturb nucleosome structure and chromatin accessibility in different ways. This review focuses on our current understanding of the mechanisms by which pioneer factors initiate gene network changes and will ultimately contribute to our ability to control cell fates at will.


Asunto(s)
Redes Reguladoras de Genes/genética , Factores de Transcripción/genética , Animales , Reprogramación Celular/genética , Cromatina/genética , Desarrollo Embrionario/genética , Histonas/genética , Humanos , Nucleosomas/genética
4.
Mol Cell ; 79(4): 677-688.e6, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32574554

RESUMEN

Enzymatic probes of chromatin structure reveal accessible versus inaccessible chromatin states, while super-resolution microscopy reveals a continuum of chromatin compaction states. Characterizing histone H2B movements by single-molecule tracking (SMT), we resolved chromatin domains ranging from low to high mobility and displaying different subnuclear localizations patterns. Heterochromatin constituents correlated with the lowest mobility chromatin, whereas transcription factors varied widely with regard to their respective mobility with low- or high-mobility chromatin. Pioneer transcription factors, which bind nucleosomes, can access the low-mobility chromatin domains, whereas weak or non-nucleosome binding factors are excluded from the domains and enriched in higher mobility domains. Nonspecific DNA and nucleosome binding accounted for most of the low mobility of strong nucleosome interactor FOXA1. Our analysis shows how the parameters of the mobility of chromatin-bound factors, but not their diffusion behaviors or SMT-residence times within chromatin, distinguish functional characteristics of different chromatin-interacting proteins.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Biología Molecular/métodos , Animales , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Humanos , Ratones , Nucleosomas/metabolismo
5.
Trends Biochem Sci ; 48(6): 513-526, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36990958

RESUMEN

Heterochromatin is defined as a chromosomal domain harboring repressive H3K9me2/3 or H3K27me3 histone modifications and relevant factors that physically compact the chromatin. Heterochromatin can restrict where transcription factors bind, providing a barrier to gene activation and changes in cell identity. While heterochromatin thus helps maintain cell differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical purposes. Recent findings have revealed complexity in the composition and regulation of heterochromatin, and shown that transiently disrupting the machinery of heterochromatin can enhance reprogramming. Here, we discuss how heterochromatin is established and maintained during development, and how our growing understanding of the mechanisms regulating H3K9me3 heterochromatin can be leveraged to improve our ability to direct changes in cell identity.


Asunto(s)
Heterocromatina , Histonas , Histonas/metabolismo , Cromatina , Diferenciación Celular , Factores de Transcripción/metabolismo
6.
Trends Genet ; 40(2): 134-148, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37940484

RESUMEN

Pioneer factors are a subclass of transcription factors that can bind and initiate opening of silent chromatin regions. Pioneer factors subsequently regulate lineage-specific genes and enhancers and, thus, activate the zygotic genome after fertilization, guide cell fate transitions during development, and promote various forms of human cancers. As such, pioneer factors are useful in directed cell reprogramming. In this review, we define the structural and functional characteristics of pioneer factors, how they bind and initiate opening of closed chromatin regions, and the consequences for chromatin dynamics and gene expression during cell differentiation. We also discuss emerging mechanisms that modulate pioneer factors during development.


Asunto(s)
Cromatina , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Diferenciación Celular/genética , Reprogramación Celular , Cigoto
7.
Cell ; 151(5): 994-1004, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23159369

RESUMEN

The ectopic expression of transcription factors can reprogram cell fate, yet it is unknown how the initial binding of factors to the genome relates functionally to the binding seen in the minority of cells that become reprogrammed. We report a map of Oct4, Sox2, Klf4, and c-Myc (O, S, K, and M) on the human genome during the first 48 hr of reprogramming fibroblasts to pluripotency. Three striking aspects of the initial chromatin binding events include an unexpected role for c-Myc in facilitating OSK chromatin engagement, the primacy of O, S, and K as pioneer factors at enhancers of genes that promote reprogramming, and megabase-scale chromatin domains spanned by H3K9me3, including many genes required for pluripotency, that prevent initial OSKM binding and impede the efficiency of reprogramming. We find diverse aspects of initial factor binding that must be overcome in the minority of cells that become reprogrammed.


Asunto(s)
Reprogramación Celular , Fibroblastos/metabolismo , Genoma Humano , Células Madre Pluripotentes/metabolismo , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Fibroblastos/citología , Expresión Génica , Código de Histonas , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Modelos Moleculares , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/metabolismo
8.
Mol Cell ; 74(1): 185-195.e4, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30797686

RESUMEN

Reprogramming cell fate during the first stages of embryogenesis requires that transcriptional activators gain access to the genome and remodel the zygotic transcriptome. Nonetheless, it is not clear whether the continued activity of these pioneering factors is required throughout zygotic genome activation or whether they are only required early to establish cis-regulatory regions. To address this question, we developed an optogenetic strategy to rapidly and reversibly inactivate the master regulator of genome activation in Drosophila, Zelda. Using this strategy, we demonstrate that continued Zelda activity is required throughout genome activation. We show that Zelda binds DNA in the context of nucleosomes and suggest that this allows Zelda to occupy the genome despite the rapid division cycles in the early embryo. These data identify a powerful strategy to inactivate transcription factor function during development and suggest that reprogramming in the embryo may require specific, continuous pioneering functions to activate the genome.


Asunto(s)
Reprogramación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Nucleares/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión , ADN/genética , ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Proteínas Nucleares/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Optogenética , Unión Proteica , Fase S
9.
Mol Cell ; 75(5): 921-932.e6, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31303471

RESUMEN

Fate-changing transcription factors (TFs) scan chromatin to initiate new genetic programs during cell differentiation and reprogramming. Yet the protein structure domains that allow TFs to target nucleosomal DNA remain unexplored. We screened diverse TFs for binding to nucleosomes containing motif-enriched sequences targeted by pioneer factors in vivo. FOXA1, OCT4, ASCL1/E12α, PU1, CEBPα, and ZELDA display a range of nucleosome binding affinities that correlate with their cell reprogramming potential. We further screened 593 full-length human TFs on protein microarrays against different nucleosome sequences, followed by confirmation in solution, to distinguish among factors that bound nucleosomes, such as the neuronal AP-2α/ß/γ, versus factors that only bound free DNA. Structural comparisons of DNA binding domains revealed that efficient nucleosome binders use short anchoring α helices to bind DNA, whereas weak nucleosome binders use unstructured regions and/or ß sheets. Thus, specific modes of DNA interaction allow nucleosome scanning that confers pioneer activity to transcription factors.


Asunto(s)
ADN/química , Nucleosomas/química , Factores de Transcripción/química , Animales , ADN/metabolismo , Humanos , Ratones , Nucleosomas/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/metabolismo
10.
Genes Dev ; 37(1-2): 63-68, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37061958
11.
Genes Dev ; 32(15-16): 991-992, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30068701

RESUMEN

Dysregulation of repetitive elements has been implicated in many cancers and other human diseases; however, the role of repetitive elements remains largely unexplored. In this issue of Genes & Development, Boulay and colleagues (pp. 1008-1019) explore the ability of GGAA repeats to act as alternative enhancers activated by EWS-FLI1 in Ewing sarcoma and contribute to tumorigenesis. Using CRISPR-mediated epigenome editing, repression of EWS-FLI1 targeted microsatellite enhancers halted aberrant gene expression and impaired the growth of Ewing sarcoma xenografts in vivo. The study reveals the regulatory capacity of repetitive elements in cancer and offers insight into therapeutic targets for Ewing sarcoma.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Sarcoma de Ewing/genética , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Repeticiones de Microsatélite , Proteínas de Fusión Oncogénica/genética
12.
Annu Rev Genomics Hum Genet ; 23: 53-71, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35440147

RESUMEN

Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.


Asunto(s)
Cromatina , Mitosis , Cromatina/genética , Cromosomas/genética , Código de Histonas , Humanos , Mitosis/genética , Factores de Transcripción/genética
13.
Mol Cell ; 68(6): 1023-1037.e15, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29272703

RESUMEN

Heterochromatin is integral to cell identity maintenance by impeding the activation of genes for alternate cell fates. Heterochromatic regions are associated with histone 3 lysine 9 trimethylation (H3K9me3) or H3K27me3, but these modifications are also found in euchromatic regions that permit transcription. We discovered that resistance to sonication is a reliable indicator of the heterochromatin state, and we developed a biophysical method (gradient-seq) to discriminate subtypes of H3K9me3 and H3K27me3 domains in sonication-resistant heterochromatin (srHC) versus euchromatin. These classifications are more accurate than the histone marks alone in predicting transcriptional silence and resistance of alternate fate genes to activation during direct cell conversion. Our proteomics of H3K9me3-marked srHC and functional screens revealed diverse proteins, including RBMX and RBMXL1, that impede gene induction during cellular reprogramming. Isolation of srHC with gradient-seq provides a genome-wide map of chromatin structure, elucidating subtypes of repressed domains that are uniquely predictive of diverse other chromatin properties.


Asunto(s)
Biomarcadores/análisis , Reprogramación Celular , Proteínas Cromosómicas no Histona/metabolismo , Genómica/métodos , Heterocromatina/genética , Heterocromatina/metabolismo , Proteómica/métodos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Mapeo Cromosómico , Fibroblastos/citología , Fibroblastos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/genética , Histonas/metabolismo , Humanos
15.
Mol Cell ; 62(5): 665-7, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259199

RESUMEN

Pioneer factors such as FoxA target nucleosomal DNA and initiate cooperative interactions at silent genes during development, cellular reprogramming, and steroid hormone induction. Biophysical studies previously showed that the nuclear mobility of FoxA1 is slower than for many other transcription factors, whereas a new single molecule study (Swinstead et al., 2016, Cell) shows comparable chromatin residence times for FoxA1 and steroid receptors. Despite that steroid receptors engage nucleosome-remodeling complexes, the vast majority of co-bound sites with FoxA are dependent upon FoxA, not vice versa. Taken together, the distinguishing feature of pioneer factors remains nucleosomal access rather than an exceptional residence time in chromatin.


Asunto(s)
Núcleo Celular/metabolismo , ADN/metabolismo , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Nucleosomas/metabolismo , Receptores de Esteroides/metabolismo , Animales , Sitios de Unión , Núcleo Celular/ultraestructura , Reprogramación Celular , Ensamble y Desensamble de Cromatina , ADN/genética , Regulación del Desarrollo de la Expresión Génica , Hormonas Esteroides Gonadales/biosíntesis , Hormonas Esteroides Gonadales/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Nucleosomas/genética , Unión Proteica , Receptores de Esteroides/genética
16.
Mol Cell ; 62(1): 79-91, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058788

RESUMEN

Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.


Asunto(s)
Elementos de Facilitación Genéticos , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Nucleosomas/metabolismo , Animales , Histonas/metabolismo , Hígado/metabolismo , Ratones , Nucleosomas/genética , Especificidad de Órganos , Regiones Promotoras Genéticas , Transcripción Genética
17.
Genes Dev ; 28(24): 2679-92, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25512556

RESUMEN

A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in "closed" chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as "pioneer factors" to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review.


Asunto(s)
Reprogramación Celular/genética , Factores de Transcripción/metabolismo , Transdiferenciación Celular , Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Nucleosomas/metabolismo , Unión Proteica , Factores de Transcripción/genética
19.
Genes Dev ; 27(3): 251-60, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23355396

RESUMEN

While most transcription factors exit the chromatin during mitosis and the genome becomes silent, a subset of factors remains and "bookmarks" genes for rapid reactivation as cells progress through the cell cycle. However, it is unknown whether such bookmarking factors bind to chromatin similarly in mitosis and how different binding capacities among them relate to function. We compared a diverse set of transcription factors involved in liver differentiation and found markedly different extents of mitotic chromosome binding. Among them, the pioneer factor FoxA1 exhibits the greatest extent of mitotic chromosome binding. Genomically, ~15% of the FoxA1 interphase target sites are bound in mitosis, including at genes that are important for liver differentiation. Biophysical, genome mapping, and mutagenesis studies of FoxA1 reveals two different modes of binding to mitotic chromatin. Specific binding in mitosis occurs at sites that continue to be bound from interphase. Nonspecific binding in mitosis occurs across the chromosome due to the intrinsic chromatin affinity of FoxA1. Both specific and nonspecific binding contribute to timely reactivation of target genes post-mitosis. These studies reveal an unexpected diversity in the mechanisms by which transcription factors help retain cell identity during mitosis.


Asunto(s)
Cromatina/metabolismo , Cromosomas/metabolismo , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Mitosis , Línea Celular Tumoral , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Modelos Moleculares , Nucleosomas , Unión Proteica
20.
Gastroenterology ; 156(6): 1834-1848, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30689973

RESUMEN

BACKGROUND & AIMS: Little is known about mechanisms that underlie postnatal hepatocyte maturation and fibrosis at the chromatin level. We investigated the transcription of genes involved in maturation and fibrosis in postnatal hepatocytes of mice, focusing on the chromatin compaction the roles of the Polycomb repressive complex 2 histone methyltransferases EZH1 and EZH2. METHODS: Hepatocytes were isolated from mixed background C57BL/6J-C3H mice, as well as mice with liver-specific disruption of Ezh1 and/or Ezh2, at postnatal day 14 and 2 months after birth. Liver tissues were collected and analyzed by RNA sequencing, H3K27me3 chromatin immunoprecipitation sequencing, and sonication-resistant heterochromatin sequencing (a method to map heterochromatin and euchromatin). Liver damage was characterized by histologic analysis. RESULTS: We found more than 3000 genes differentially expressed in hepatocytes during liver maturation from postnatal day 14 to month 2 after birth. Disruption of Ezh1 and Ezh2 in livers caused perinatal hepatocytes to differentiate prematurely and to express genes at postnatal day 14 that would normally be induced by month 2 and differentiate prematurely. Loss of Ezh1 and Ezh2 also resulted in liver fibrosis. Genes with H3K27me3-postive and H3K4me3-positive euchromatic promoters were prematurely induced in hepatocytes with loss of Ezh1 and Ezh2-these genes included those that regulate hepatocyte maturation, fibrosis, and genes not specifically associated with the liver lineage. CONCLUSIONS: The Polycomb repressive complex 2 proteins EZH1 and EZH2 regulate genes that control hepatocyte maturation and fibrogenesis and genes not specifically associated with the liver lineage by acting at euchromatic promoter regions. EZH1 and EZH2 thereby promote liver homeostasis and prevent liver damage. Strategies to manipulate Polycomb proteins might be used to improve hepatocyte derivation protocols or developed for treatment of patients with liver fibrosis.


Asunto(s)
Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Represión Epigenética , Regulación de la Expresión Génica/genética , Cirrosis Hepática/genética , Complejo Represivo Polycomb 2/genética , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Eucromatina , Femenino , Expresión Génica , Ontología de Genes , Hepatocitos , Histonas/metabolismo , Cirrosis Hepática/patología , Masculino , Metilación , Ratones , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA