Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochim Biophys Acta ; 1832(6): 780-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23466593

RESUMEN

Eukaryotic elongation factor 2 (eEF-2) and mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K) signaling pathways control protein synthesis and are inhibited during myocardial ischemia. Intracellular acidosis and AMP-activated protein kinase (AMPK) activation, both occurring during ischemia, have been proposed to participate in this inhibition. We evaluated the contribution of AMPKα2, the main cardiac AMPK catalytic subunit isoform, in eEF2 and mTOR-p70S6K regulation using AMPKα2 KO mice. Hearts were perfused ex vivo with or without insulin, and then submitted or not to ischemia. Insulin pre-incubation was necessary to activate mTOR-p70S6K and evaluate their subsequent inhibition by ischemia. Ischemia decreased insulin-induced mTOR-p70S6K phosphorylation in WT and AMPKα2 KO mice to a similar extent. This AMPKα2-independent p70S6K inhibition correlated well with the inhibition of PKB/Akt, located upstream of mTOR-p70S6K and can be mimicked in cardiomyocytes by decreasing pH. By contrast, ischemia-induced inhibitory phosphorylation of eEF-2 was drastically reduced in AMPKα2 KO mice. Interestingly, AMPKα2 also played a role under normoxia. Its deletion increased the insulin-induced p70S6K stimulation. This p70S6K over-stimulation was associated with a decrease in inhibitory phosphorylation of Raptor, an mTOR partner identified as an AMPK target. In conclusion, AMPKα2 controls cardiac p70S6K under normoxia and regulates eEF-2 but not the mTOR-p70S6K pathway during ischemia. This challenges the accepted notion that mTOR-p70S6K is inhibited by myocardial ischemia mainly via an AMPK-dependent mechanism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Musculares/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Activación Enzimática/genética , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/patología , Miocardio/patología , Factor 2 de Elongación Peptídica/genética , Proteína Reguladora Asociada a mTOR , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
Biochem Biophys Res Commun ; 410(2): 201-7, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21621517

RESUMEN

The aim of this study was to investigate whether supplemental IGF-1Ea transgene expression induces activation of local cardiac and bone marrow stem cell population to mediate mammalian heart repair. In physiologic conditions, cardiac overexpression of the IGF-1Ea propeptide is associated with an enrichment of c-Kit/Sca-1 positive side population cells in the bone marrow and the occurrence of an endothelial-primed CD34 positive side population in the heart. This cellular profile is shown here to correlate with the expression of cytokines involved in stem cell mobilization and vessel formation. This molecular and cellular interplay favored IGF-1Ea-mediated vessel formation in injured hearts. The physiologic and pathologic connection between cytokines and stem cells in response to IGF-1Ea may represent an important model to understand how to elicit endogenous reparative signaling.


Asunto(s)
Células de la Médula Ósea/fisiología , Citocinas/metabolismo , Corazón/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica , Regeneración , Animales , Antígenos Ly/metabolismo , Células de la Médula Ósea/metabolismo , Vasos Coronarios/fisiología , Factor I del Crecimiento Similar a la Insulina/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Células Madre/metabolismo , Células Madre/fisiología
3.
Biochim Biophys Acta ; 1791(3): 212-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19159696

RESUMEN

Enhanced contractile activity increases cardiac long-chain fatty acid (LCFA) uptake via translocation of CD36 to the sarcolemma, similarly to increase in glucose uptake via GLUT4 translocation. AMP-activated protein kinase (AMPK) is assumed to mediate contraction-induced LCFA utilization. However, which catalytic isoform (AMPKalpha1 versus AMPKalpha2) is involved, is unknown. Furthermore, no studies have been performed on the role of LKB1, a kinase with AMPKK activity, on the regulation of cardiac LCFA utilization. Using different mouse models (AMPKalpha2-kinase-dead, AMPKalpha2-knockout and LKB1-knockout mice), we tested whether LKB1 and/or AMPK are required for stimulation of LCFA and glucose utilization upon treatment of cardiomyocytes with compounds (oligomycin/AICAR/dipyridamole) which induce CD36 translocation similar to that seen upon contraction. In AMPKalpha2- kinase-dead cardiomyocytes, the stimulating effects of oligomycin and AICAR on palmitate and deoxyglucose uptake and palmitate oxidation were almost completely lost. Moreover, in AMPKalpha2- and LKB1-knockout cardiomyocytes, oligomycin-induced LCFA and deoxyglucose uptake were completely abolished. However, the stimulatory effect of dipyridamole on palmitate uptake and oxidation was preserved in AMPKalpha2-kinase-dead cardiomyocytes. In conclusion, in the heart there is a signaling axis consisting of LKB1 and AMPKalpha2 which activation results in enhanced LCFA utilization, similarly to enhanced glucose uptake. In addition, an unknown dipyridamole-activated pathway can stimulate cardiac LCFA utilization by activating signaling components downstream of AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Antígenos CD36/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Transporte Biológico , Desoxiglucosa/metabolismo , Dipiridamol/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/farmacología , Integrasas/metabolismo , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Oligomicinas/farmacología , Oxidación-Reducción , Palmitatos/metabolismo , Fenotipo , Fosforilación , Inhibidores de Agregación Plaquetaria/farmacología , Transporte de Proteínas , Ribonucleótidos/farmacología , Sarcolema/metabolismo , Desacopladores/farmacología
4.
Biochem Biophys Res Commun ; 376(4): 677-81, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18812163

RESUMEN

As AMP-activated protein kinase (AMPK) controls protein translation, an anti-hypertrophic effect of AMPK has been suggested. However, there is no genetic evidence to confirm this hypothesis. We investigated the contribution of AMPKalpha2 in the control of cardiac hypertrophy by using AMPKalpha2-/- mice submitted to isoproterenol. The isoproterenol-induced cardiac hypertrophy, measured by left ventricular mass and histological examination, was significantly higher in AMPKalpha2-/- than in WT animals. Moreover, the intensification of cardiac hypertrophy found in AMPKalpha2-/- mice can be linked to the abnormal basal overstimulation of the p70 ribosomal S6 protein kinase, an enzyme known to regulate protein translation and cell growth. In conclusion, this work shows that AMPKalpha2 plays a role of brake for the development of cardiac hypertrophy.


Asunto(s)
Hipertrofia Ventricular Izquierda/genética , Complejos Multienzimáticos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Quinasas Activadas por AMP , Animales , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/patología , Isoproterenol/toxicidad , Ratones , Ratones Noqueados , Complejos Multienzimáticos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
5.
PLoS One ; 11(3): e0152628, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27023784

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell growth, proliferation and metabolism. mTORC1 regulates protein synthesis positively and autophagy negatively. Autophagy is a major system to manage bulk degradation and recycling of cytoplasmic components and organelles. Tuberous sclerosis complex (TSC) 1 and 2 form a heterodimeric complex and inactivate Ras homolog enriched in brain, resulting in inhibition of mTORC1. Here, we investigated the effects of hyperactivation of mTORC1 on cardiac function and structure using cardiac-specific TSC2-deficient (TSC2-/-) mice. TSC2-/- mice were born normally at the expected Mendelian ratio. However, the median life span of TSC2-/- mice was approximately 10 months and significantly shorter than that of control mice. TSC2-/- mice showed cardiac dysfunction and cardiomyocyte hypertrophy without considerable fibrosis, cell infiltration or apoptotic cardiomyocyte death. Ultrastructural analysis of TSC2-/- hearts revealed misalignment, aggregation and a decrease in the size and an increase in the number of mitochondria, but the mitochondrial function was maintained. Autophagic flux was inhibited, while the phosphorylation level of S6 or eukaryotic initiation factor 4E -binding protein 1, downstream of mTORC1, was increased. The upregulation of autophagic flux by trehalose treatment attenuated the cardiac phenotypes such as cardiac dysfunction and structural abnormalities of mitochondria in TSC2-/- hearts. The results suggest that autophagy via the TSC2-mTORC1 signaling pathway plays an important role in maintenance of cardiac function and mitochondrial quantity and size in the heart and could be a therapeutic target to maintain mitochondrial homeostasis in failing hearts.


Asunto(s)
Autofagia , Regulación hacia Abajo , Corazón/fisiopatología , Mitocondrias Cardíacas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Autofagia/efectos de los fármacos , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Corazón/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/ultraestructura , Complejos Multiproteicos/metabolismo , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trehalosa/farmacología , Proteína 2 del Complejo de la Esclerosis Tuberosa , Regulación hacia Arriba/efectos de los fármacos
6.
PLoS One ; 8(11): e80268, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24265802

RESUMEN

Serum and glucocorticoid inducible kinase 1 (SGK1) plays a pivotal role in early angiogenesis during embryonic development. In this study, we sought to define the SGK1 downstream signalling pathways in the adult heart and to elucidate their role in cardiac neo-angiogenesis and wound healing after myocardial ischemia. To this end, we employed a viable SGK1 knockout mouse model generated in a 129/SvJ background. Ablation of SGK1 in these mice caused a significant decrease in phosphorylation of SGK1 target protein NDRG1, which correlated with alterations in NF-κB signalling and expression of its downstream target protein, VEGF-A. Disruption of these signalling pathways was accompanied by smaller heart and body size. Moreover, the lack of SGK1 led to defective endothelial cell (ECs) migration and tube formation in vitro, and increased scarring with decreased angiogenesis in vivo after myocardial infarct. This study underscores the importance of SGK1 signalling in cardiac neo-angiogenesis and wound healing after an ischemic insult in vivo.


Asunto(s)
Células Endoteliales/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Neovascularización Patológica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/genética , Tamaño de la Célula , Modelos Animales de Enfermedad , Fibrosis , Proteínas Inmediatas-Precoces/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , FN-kappa B/metabolismo , Neovascularización Patológica/genética , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Transducción de Señal
7.
J Appl Physiol (1985) ; 108(5): 1106-15, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20185632

RESUMEN

Insulin and contraction regulate glucose uptake and glycogen synthase (GS) via distinct mechanisms in skeletal muscles, and an additive effect has been reported. Glycogen content is known to influence both contraction- and insulin-stimulated glucose uptake and GS activity. Our study reports that contraction and insulin additively stimulate glucose uptake in rat epitrochlearis muscles with normal (NG) and high (HG) glycogen contents, but the additive effect was only partial. In muscles with low glycogen (LG) content no additive effect was seen, but glucose uptake was higher in LG than in NG and HG during contraction, insulin stimulation, and when the two stimuli were combined. In LG, contraction-stimulated AMP-activated protein kinase (AMPK) activity and insulin-stimulated PKB phosphorylation were higher than in NG and HG, but phosphorylation of Akt substrate of 160 kDa was not elevated correspondingly. GLUT4 content was 50% increased in LG (rats fasted 24 h), which may explain the increased glucose uptake. Contraction and insulin also additively increased GS fractional activity in NG and HG but not in LG. GS fractional activity correlated most strongly with GS Ser641 phosphorylation (R -0.94, P<0.001). GS fractional activity also correlated with GS Ser7,10 phosphorylation, but insulin did not reduce GS Ser7,10 phosphorylation. In conclusion, an additive effect of contraction and insulin on glucose uptake and GS activity occurs in muscles with normal and high glycogen content but not in muscles with low glycogen content. Furthermore, contraction, insulin, and glycogen content all regulate GS Ser641 phosphorylation and GS fractional activity in concert.


Asunto(s)
Glucosa/metabolismo , Glucógeno Sintasa/metabolismo , Glucógeno/metabolismo , Insulina/metabolismo , Contracción Muscular , Músculo Esquelético/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Privación de Alimentos , Proteínas Activadoras de GTPasa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Hexoquinasa/metabolismo , Masculino , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Serina , Transducción de Señal , Factores de Tiempo
8.
J Clin Invest ; 120(7): 2355-69, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20577053

RESUMEN

Metformin is widely used to treat hyperglycemia in individuals with type 2 diabetes. Recently the LKB1/AMP-activated protein kinase (LKB1/AMPK) pathway was proposed to mediate the action of metformin on hepatic gluconeogenesis. However, the molecular mechanism by which this pathway operates had remained elusive. Surprisingly, here we have found that in mice lacking AMPK in the liver, blood glucose levels were comparable to those in wild-type mice, and the hypoglycemic effect of metformin was maintained. Hepatocytes lacking AMPK displayed normal glucose production and gluconeogenic gene expression compared with wild-type hepatocytes. In contrast, gluconeogenesis was upregulated in LKB1-deficient hepatocytes. Metformin decreased expression of the gene encoding the catalytic subunit of glucose-6-phosphatase (G6Pase), while cytosolic phosphoenolpyruvate carboxykinase (Pepck) gene expression was unaffected in wild-type, AMPK-deficient, and LKB1-deficient hepatocytes. Surprisingly, metformin-induced inhibition of glucose production was amplified in both AMPK- and LKB1-deficient compared with wild-type hepatocytes. This inhibition correlated in a dose-dependent manner with a reduction in intracellular ATP content, which is crucial for glucose production. Moreover, metformin-induced inhibition of glucose production was preserved under forced expression of gluconeogenic genes through PPARgamma coactivator 1alpha (PGC-1alpha) overexpression, indicating that metformin suppresses gluconeogenesis via a transcription-independent process. In conclusion, we demonstrate that metformin inhibits hepatic gluconeogenesis in an LKB1- and AMPK-independent manner via a decrease in hepatic energy state.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/farmacología , Hígado/metabolismo , Metformina/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Gluconeogénesis/genética , Glucosa/genética , Glucosa/metabolismo , Glucosa/farmacología , Glucosa-6-Fosfatasa/biosíntesis , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Hepatocitos/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hipoglucemiantes/metabolismo , Hígado/efectos de los fármacos , Metformina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/farmacología , Regulación hacia Arriba/efectos de los fármacos
9.
Front Biosci (Landmark Ed) ; 14(1): 19-44, 2009 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-19273052

RESUMEN

AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, has been proposed to function as a fuel gauge to monitor cellular energy status in response to nutritional environmental variations. AMPK system is a regulator of energy balance that, once activated by low energy status, switches on ATP-producing catabolic pathways (such as fatty acid oxidation and glycolysis), and switches off ATP-consuming anabolic pathways (such as lipogenesis), both by short-term effect on phosphorylation of regulatory proteins and by long-term effect on gene expression. Numerous observations obtained with pharmacological activators and agents that deplete intracellular ATP have been supportive of AMPK playing a role in the control of energy metabolism but none of these studies have provided conclusive evidence. Relatively recent developments in our understanding of precisely how AMPK complexes might operate to control energy metabolism is due in part to the development of transgenic and knockout mouse models. Although there are inevitable caveats with genetic models, some important findings have emerged. In the present review, we discuss recent findings obtained from animal models with inhibition or activation of AMPK signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/química , Tejido Adiposo/enzimología , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/enzimología , Vasos Sanguíneos/fisiología , Metabolismo Energético , Técnicas de Inactivación de Genes , Humanos , Hipoglucemiantes/farmacología , Hipotálamo/enzimología , Resistencia a la Insulina , Hígado/enzimología , Modelos Animales , Músculo Esquelético/enzimología , Miocardio/enzimología , Conformación Proteica
10.
Cardiovasc Res ; 76(3): 465-72, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17765884

RESUMEN

OBJECTIVE: p38 mitogen-activated protein kinase (p38 MAPK) and AMP-activated protein kinase (AMPK) are activated by, and influence sensitivity to, myocardial ischemia. Recently a number of studies have suggested that AMPK may participate in the activation of p38 MAPK. We therefore examined whether AMPK may be the principal "ischemia sensor" responsible for p38 MAPK activation during myocardial ischemia. METHODS: We used a variety of approaches to alter AMPK activity during ischemia and studied the repercussions on p38 MAPK activation. RESULTS: The activities of AMPK and p38 MAPK were temporally related in adult rat ventricular myocytes (ARVM) subjected to simulated ischemia and in isolated mouse hearts subjected to no-flow ischemia. However p38 MAPK activation was unaltered in mouse hearts lacking the predominant or minor myocardial isoforms, AMPKalpha2 or AMPKalpha1 respectively. Likewise, in ARVM, adenoviral-driven expression of the minor myocardial isoform AMPKalpha1, in a constitutively active or dominant negative form reducing AMPK activity, did not alter p38 MAPK activation under basal conditions or during simulated ischemia. Finally, pharmacological inhibition of AMPK during ischemia with compound C did not attenuate the coincident activation of p38 MAPK. CONCLUSIONS: Although AMPK and p38 MAPK are both activated during myocardial ischemia, the activation of p38 MAPK occurs independently of AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Isquemia Miocárdica/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas
11.
Am J Physiol Heart Circ Physiol ; 292(6): H3136-47, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17337600

RESUMEN

Because the question "is AMP-activated protein kinase (AMPK) alpha(2)-isoform a friend or a foe in the protection of the myocardium against ischemia-reperfusion injury?" is still in debate, we studied the functional consequence of its deletion on the contractility, the energetics, and the respiration of the isolated perfused heart and characterized the response to low-flow ischemia and reperfusion with glucose and pyruvate as substrates. alpha(2)-AMPK deletion did not affect basal contractility, respiration, and high-energy phosphate contents but induced a twofold reduction in glycogen content and a threefold reduction in glucose uptake. Low-flow ischemia increased AMPK phosphorylation and stimulated glucose uptake and phosphorylation in both alpha(2)-knockout (alpha(2)-KO) and wild-type (WT) groups. The high sensitivity of alpha(2)-KO to the development of ischemic contracture was attributed to the constitutive impairment in glucose transport and glycogen content and not to a perturbation of the energy transfer by creatine kinase (CK). The functional coupling of MM-CK to myofibrillar ATPase and the CK fluxes were indeed similar in alpha(2)-KO and WT. Low-flow ischemia impaired CK flux by 50% in both strains, showing that alpha(2)-AMPK does not control CK activity. Despite the higher sensitivity to contracture, the postischemic contractility recovered to similar levels in both alpha(2)-KO and WT in the absence of fatty acids. In their presence, alpha(2)-AMPK deletion also accelerated the contracture but delayed postischemic contractile recovery. In conclusion, alpha(2)-AMPK is required for a normal glucose uptake and glycogen content, which protects the heart from the development of the ischemic contracture, but not for contractile recovery in the absence of fatty acids.


Asunto(s)
Metabolismo Energético , Complejos Multienzimáticos/metabolismo , Contracción Miocárdica , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Adenosina Trifosfato/metabolismo , Animales , Respiración de la Célula , Forma MM de la Creatina-Quinasa/metabolismo , Activación Enzimática , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Técnicas In Vitro , Cinética , Masculino , Ratones , Ratones Noqueados , Complejos Multienzimáticos/deficiencia , Complejos Multienzimáticos/genética , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/enzimología , Consumo de Oxígeno , Perfusión , Fosfocreatina/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Ácido Pirúvico/metabolismo
12.
Am J Physiol Endocrinol Metab ; 290(5): E780-8, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16332922

RESUMEN

Recent studies indicate that the LKB1 is a key regulator of the AMP-activated protein kinase (AMPK), which plays a crucial role in protecting cardiac muscle from damage during ischemia. We have employed mice that lack LKB1 in cardiac and skeletal muscle and studied how this affected the activity of cardiac AMPKalpha1/alpha2 under normoxic, ischemic, and anoxic conditions. In the heart lacking cardiac muscle LKB1, the basal activity of AMPKalpha2 was vastly reduced and not increased by ischemia or anoxia. Phosphorylation of AMPKalpha2 at the site of LKB1 phosphorylation (Thr172) or phosphorylation of acetyl-CoA carboxylase-2, a downstream substrate of AMPK, was ablated in ischemic heart lacking cardiac LKB1. Ischemia was found to increase the ADP-to-ATP (ADP/ATP) and AMP-to-ATP ratios (AMP/ATP) to a greater extent in LKB1-deficient cardiac muscle than in LKB1-expressing muscle. In contrast to AMPKalpha2, significant basal activity of AMPKalpha1 was observed in the lysates from the hearts lacking cardiac muscle LKB1, as well as in cardiomyocytes that had been isolated from these hearts. In the heart lacking cardiac LKB1, ischemia or anoxia induced a marked activation and phosphorylation of AMPKalpha1, to a level that was only moderately lower than observed in LKB1-expressing heart. Echocardiographic and morphological analysis of the cardiac LKB1-deficient hearts indicated that these hearts were not overtly dysfunctional, despite possessing a reduced weight and enlarged atria. These findings indicate that LKB1 plays a crucial role in regulating AMPKalpha2 activation and acetyl-CoA carboxylase-2 phosphorylation and also regulating cellular energy levels in response to ischemia. They also provide genetic evidence that an alternative upstream kinase can activate AMPKalpha1 in cardiac muscle.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Isquemia Miocárdica/fisiopatología , Miocardio/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Peso Corporal , Electrocardiografía , Activación Enzimática , Corazón/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Tamaño de los Órganos , Perfusión , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 291(6): H2875-83, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16877552

RESUMEN

AMP-activated protein kinase (AMPK) is a major sensor and regulator of the energetic state of the cell. Little is known about the specific role of AMPKalpha(2), the major AMPK isoform in the heart, in response to global ischemia. We used AMPKalpha(2)-knockout (AMPKalpha(2)(-/-)) mice to evaluate the consequences of AMPKalpha(2) deletion during normoxia and ischemia, with glucose as the sole substrate. Hemodynamic measurements from echocardiography of hearts from AMPKalpha(2)(-/-) mice during normoxia showed no significant modification compared with wild-type animals. In contrast, the response of hearts from AMPKalpha(2)(-/-) mice to no-flow ischemia was characterized by a more rapid onset of ischemia-induced contracture. This ischemic contracture was associated with a decrease in ATP content, lactate production, glycogen content, and AMPKbeta(2) content. Hearts from AMPKalpha(2)(-/-) mice were also characterized by a decreased phosphorylation state of acetyl-CoA carboxylase during normoxia and ischemia. Despite an apparent worse metabolic adaptation during ischemia, the absence of AMPKalpha(2) does not exacerbate impairment of the recovery of postischemic contractile function. In conclusion, AMPKalpha(2) is required for the metabolic response of the heart to no-flow ischemia. The remaining AMPKalpha(1) cannot compensate for the absence of AMPKalpha(2).


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Complejos Multienzimáticos/metabolismo , Isquemia Miocárdica/enzimología , Miocardio/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/metabolismo , Adenina/análisis , Adenosina Trifosfato/metabolismo , Animales , Ácidos Grasos/metabolismo , Glucógeno/metabolismo , Isoenzimas/fisiología , Lactatos/metabolismo , Ratones , Ratones Noqueados , Contracción Miocárdica/fisiología , Fenotipo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA