RESUMEN
Two green inhibitors extracted from an endemic species (Origanum grosii (Og)) using two solvents of different polarity (water and ethanol), OgW (aqueous extract) and OgE (ethanolic extract), were used for the anticorrosion of mild steel (M steel) in a 1â M HCl medium. Anticorrosive performance of OgW and OgE was assessed using standard electrochemical techniques, EIS/PDP measurements, weight loss method and SEM/EDX surface analysis. The results show that OgW achieves a maximum inhibition efficiency of 92 % and that the extract in aqueous medium (more polar) is more efficient than the extract in ethanolic medium (less polar). Both extracts act as mixed inhibitors and their corrosion process is predominantly governed by a charge transfer. Concentration and temperature effect was studied and shown that they are two antagonistic parameters for the evolution of inhibitory effectiveness of both OgW and OgE. The adsorption isotherms of the two inhibitors OgE and OgW obey to the Langmuir adsorption model. Moreover, the examination of SEM images and EDX spectra support a deposit of both extracts on the metal surface by an adsorption phenomenon. Besides, theoretical approach of the molecular structures of the major compounds M-OgW and M-OgE and inhibition efficiency was examined via DFT calculations and molecular dynamics simulations and it was consistent with the experimental findings.
Asunto(s)
Ácido Clorhídrico , Origanum , Extractos Vegetales , Acero , Adsorción , Corrosión , Ácido Clorhídrico/química , Estructura Molecular , Origanum/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Acero/química , Propiedades de Superficie , Etanol/químicaRESUMEN
This study investigates for the first time the effects of UV light exposure on the chemical composition of artisanal and cold-pressed culinary and cosmetic argan oils, as well as their quality and biological activities. We ascertained the oxidative stability of both types of oil through measurements of the peroxide value, acidity, UV-spectrophotometric indexes (E232 and E270), and iodine value. Over the course of eight hours at room temperature, the impact of UV light on the breakdown of tocopherols, polyphenols, chlorophylls, and carotenoid pigments was examined. The findings showed that during photo-oxidation, acidity, peroxide value, and particular extinction coefficients (E232 and E270) gradually increased. On the other hand, a decline in the content of polyphenols, tocopherols, carotenoid, and chlorophyll was noted. Interestingly, iodine levels failed to improve. Although after an eight-hour degradation, the physicochemical profile of argan oils remained exceptional. DPPH⢠(1,1-Diphenyl-2-picrylhydrazyl) antioxidant activity tests showed a gradual decrease in radical inhibition over time, which was attributed to lower levels of tocopherol and polyphenol. However, roasted oils showed antifungal action against Botrytis cinerea fungus, while Argan vegetable oils showed no activity against Escherichia coli, Microbacterium resistens, Staphylococcus saprophyticus, and Raoultella ornithinolytica, according to antimicrobial assays.
RESUMEN
This study investigates, in the first part, the synthesis and purification of a poorly crystalline hydroxyapatite (HAp) using natural Moroccan phosphate (Boucraa region) as a raw material. Despite its successful preparation, the obtained HAp was contaminated by several metallic cations (mostly Cd, Pb, Sn, Ti, Mn, Mg, Fe, and Al) migrated from the natural rocks during the digestion process, inhibiting HAp application in several sectors. To minimize the existence of these elements, the dissolution-precipitation technique (DP) was investigated as a non-selective purification process. Following the initial DP cycle conducted on the precipitated HAp, the removal efficiency was approximately 60% for Al, Fe, Mg, Mn, and Ti and 90% for Cd and Pb. After three consecutive DP cycles, notable improvement in the removal efficiency was observed, reaching 66% for Fe, 69% for Mg, 73% for Mn, and 74% for Al, while Cd, Pb, and Ti were totally removed. In the second part of this study, the purified HAp was digested using sulfuric acid to produce high-quality phosphoric acid (PA) and gypsum (GP). The elemental analysis of the PA indicates a removal efficiency of approximately 89% for Fe and over 94% for all the examined cations. In addition, the generated GP was dominated by SO3 and CaO accompanied with minor impurities. Overall, this simple process proves to be practically useful, to reduce a broad spectrum of cationic impurities, and to be flexible to prepare valuable products such hydroxyapatite, phosphoric acid, and gypsum.
RESUMEN
A new double-open-cubane core Cd(II)-O-Cu(II) bimetallic ligand mixed cluster of type [Cl2Cu4Cd2(NNO)6(NN)2(NO3)2].CH3CN was made available in EtOH/CH3CN solution. The 1-hydroxymethyl-3,5-dimethylpyrazole (NNOH) and 3,5-dimethylpyrazole (NNH) act as N,O-polydentate anion ligands in coordinating the Cu(II) and Cd(II) centers. The structure of the cluster in the solid state was proved by XRD study and confirmed in the liquid state by UV-vis analysis. The XRD result supported the construction of two octahedral and one square pyramid geometries types around the four Cu(II) centers and only octahedral geometry around Cd(II) two centers. Interestingly, NNOH ligand acts as a tetra-µ3-oxo and tri-µ2-oxo ligand; meanwhile, the N-N in NNH acts as classical bidentate anion/neutral ligands. The interactions in the lattice were detected experimentally by the XRD-packing result and computed via Hirschfeld surface analysis (HSA). The UV-vis., FT-IR and Energy Dispersive X-ray (EDX), supported the desired double-open cubane cluster composition. The oxidation potential of the desired cluster was evaluated using a 3,5-DTB-catechol 3,5-DTB-quinone as a catecholase model reaction.
Asunto(s)
Complejos de Coordinación , Cadmio/química , Catálisis , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cobre/química , Modelos Moleculares , Oxidación-ReducciónRESUMEN
The exo⇔endo isomerization of 2,5-dimethoxybenzaldehyde was theoretically studied by density functional theory (DFT) to examine its favored conformers via sp2-sp2 single rotation. Both isomers were docked against 1BNA DNA to elucidate their binding ability, and the DFT-computed structural parameters results were matched with the X-ray diffraction (XRD) crystallographic parameters. XRD analysis showed that the exo-isomer was structurally favored and was also considered as the kinetically preferred isomer, while several hydrogen-bonding interactions detected in the crystal lattice by XRD were in good agreement with the Hirshfeld surface analysis calculations. The molecular electrostatic potential, Mulliken and natural population analysis charges, frontier molecular orbitals (HOMO/LUMO), and global reactivity descriptors quantum parameters were also determined at the B3LYP/6-311G(d,p) level of theory. The computed electronic calculations, i.e., TD-SCF/DFT, B3LYP-IR, NMR-DB, and GIAO-NMR, were compared to the experimental UV-Vis., optical energy gap, FTIR, and 1H-NMR, respectively. The thermal behavior of 2,5-dimethoxybenzaldehyde was also evaluated in an open atmosphere by a thermogravimetric-derivative thermogravimetric analysis, indicating its stability up to 95 °C.
Asunto(s)
Benzaldehídos/química , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Sitios de Unión , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Enlace de Hidrógeno , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , TermogravimetríaRESUMEN
The present study focuses on an environmental approach based on the use of an eco-friendly corrosion inhibitor from the Citrullus colocynthis fruit extract for enhancement corrosion resistance of carbon steel (C-S) in acid medium as an alternative to various organic and non-organic chemical inhibitors. The evaluation of the inhibition properties of the fruit methanolic extract of Citrullus colocynthis (CCE) were performed in molar hydrochloric acid (1 M HCl) medium using gravimetric and electrochemical (potentiodynamic polarization and AC impedance) techniques as well as surface analyses. CCE is rich in amino acids, mainly citrulline and ß-(pyrazo-1-yl)-L-analine molecules. Based on the weight loss evaluation, the results demonstrated that this plant extract acts as an effective corrosion inhibitor and a protection level of 93.6% was attained at 500 ppm of CCE after 6 h of metal exposure at 303 K. According to polarization curves, CCE functions as a mixed-type inhibitor. In addition, AC impedance analyses have shown that the incorporation of CCE into the corrosive solution leads to a decrease in load capacity, while improving the charge/discharge function at the interface. This suggests the possibility of the formation of an adsorbed layer on the C-S surface. In addition, scanning electron microscope (SEM) observation, contact angle measurements, and Fourier-transform infrared spectroscopy (FTIR) analyses supported the development of a protective film over CS substrate surface afterwards addition of CCE. Langmuir and/or Temkin isotherms can be used to characterize the adsorption of this organic inhibitor on the C-S surface. X-ray photoelectron spectroscopy (XPS) has revealed that the inhibiting effect of CCE on the corrosion of C-S in 1 M HCl solution is mainly controlled by a chemisorption process and the inhibitive layer is composed of an iron oxide/hydroxide mixture where CCE molecules are incorporated. In order to understand the relationship between the molecular structure and anti-corrosion effectiveness of these inhibitor molecules, quantum chemical studies were carried out using density functional theory (DFT) and molecular dynamics (MD) simulation.
Asunto(s)
Citrullus colocynthis , Frutas , Ácido Clorhídrico , Extractos Vegetales , Acero , Corrosión , Acero/química , Ácido Clorhídrico/química , Frutas/química , Extractos Vegetales/química , Citrullus colocynthis/química , Carbono/químicaRESUMEN
The present research demonstrates an innovative investigation of environmentally friendly mild steel (M-steel) corrosion inhibition using the artemisia stems aqueous extract (ASAEx) as an inhibitor in hydrochloric acid 1 M. The standard extraction technique of hydrodistillation was used for producing the aqueous solutions of ASAEx. To assess the ratios of the chemical components, phytochemical screening was used to identify the stems of this plant. We used a variety of methods and techniques in our research on corrosion inhibition, including weight loss measures, surface analysis methods like XPS and SEM/EDS, electrochemical testing like PDP and EIS, as well as computational lead compound evaluation. Maximum inhibitory efficacy was achieved with 400 mg/L ASAEx in 1 M HCl at 303 K, i.e. 90%. The PDP investigation verified the mixed-kind inhibitor status of the ASAEx extract. To describe the surface of M-steel, fitting and synthetic data were used to identify a constant phase element (CPE). SEM surface analysis was also used to detect the ASAEx effect on the surface of M-steel. X-ray photoelectron spectroscopy (XPS) analysis shows the presence of trace molecules of ASAEx on M-steel surface characterizing the bands in Maj-ASAEx (major compound of ASAEx). Density functional theory (DFT) and molecular dynamics simulations (MDs) were used in computational chemistry to clarify the adsorption mechanism and inhibitory impact.
Asunto(s)
Artemisia , Extractos Vegetales , Acero , Ácido Clorhídrico , Extractos Vegetales/química , Artemisia/química , Tallos de la Planta/química , Acero/química , Espectroscopía de FotoelectronesRESUMEN
Four Pd(II) complexes, (dpk)PdCl2 (complex-1), and (dpk)Pd(OAc)2 (complex-2) have been prepared using di(2-pyridyl) ketone as the chelate ligand (dpk). The (dpk·EtOH)PdCl2 (complex-3) and (dpk·EtOH)Pd(OAc)2 (complex-4) were synthesized by selectively introducing complex-1 and complex-2 to an EtOH in situ nucleophilic addition reaction on the O=C of the dpk ligand, respectively. All complexes were characterized using CHN-EA, UV-vis, FT-IR, FAB-MS, EDX, TGA, and NMR physicochemical tools. The XRD-crystallography technique was employed to ascertain the structure of complex-3. The analysis revealed a monoclinic/P21/c crystal system characterized by a square planar structure oriented in the cis direction around the Pd center. Several C-H···Cl and O-H···O H-bonds constructing 2D-S12 and S7 synthons were confirmed via XRD/HSA interactions. The influence of EtOH addition to the O=C group of dpk in (dpk)PdCl2 was documented by using UV-vis/FT-IR spectra and TGA analysis. As catalysts, all complexes have demonstrated a notable catalytic function in the Heck reaction, resulting in a high yield under gentle conditions using iodobenzene and methyl acrylate as model reactions. Moreover, the complex-1 and complex-3 docking activity was evaluated against 1BNA-DNA.
RESUMEN
A new series of 1,2,3-triazole-8-quinolinol hybrids were synthesized in good yields using monosubstituted acetonitriles and 5-azidomethyl-8-quinolinol as the starting reagents via a one-step protocol. The structures of 1,2,3-triazole-8-quinolinol hybrids were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopy and elemental analysis. Antibacterial activity in vitro of all the synthesized hybrids was investigated against Escherichia coli (E. coli), Xanthomonas fragariae (X. fragariae), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) applying the methods of disk diffusion and minimal inhibition concentration (MIC). Hybrid 7 exhibited excellent antibacterial capacity, with an MIC value of 10 µg/mL against S. aureus and 20 µg/mL against B. subtilis, E. coli, and X. fragariae, which were comparable to those that of the standard antibiotic nitroxoline. A structure-activity relationship (SAR) study of 1,2,3-triazole-8-quinolinol hybrids showed that introducing electron-donating substituents in the 1,2,3-triazole ring at the 4-position is important for activity. Quantum chemical calculations have been undertaken to employ the Gaussian software in the B3LYP, HF, and M062X basis sets using 3-21g, 6-31g, and SDD levels to further explain linkages within the antibacterial findings. Furthermore, molecular docking investigations were also conducted to investigate the binding affinities as well as the interactions of some hybrids with the target proteins. An absorption, distribution, metabolism, excretion, and toxicity (ADME/T) investigation was carried out to scrutinize the viability of employing the 1,2,3-triazole-8-quinolinol hybrids as medicines.
RESUMEN
The aim of the present study is the valorization of the essential oil of Mentha suaveolens Ehrh. The research plan and methods included 3-axis: the first axis consists of studying the organoleptic and physicochemical characterization of the essential oil, the second is the chemical analysis carried out by Gas Chromatography/Mass Spectrometry (GC/MS) and the third consists of evaluating its antimicrobial activity against selected microorganisms. The results obtained for the organoleptic and physicochemical properties are as follows: appearance: Liquid, mobile and clear, odor: Strong odor characteristic of Mentha suaveolens Ehrh, color: Pale yellow; relative density (0.92), miscibility with ethanol (1V/2V), freezing point (Tfreezing < -10 °C), refractive index (1.5256), rotating power (+0.825), acid index (1.68), ester index (68.44), saponification index (70.13) and iodine index (12.05).Chemical analysis identified 69 compounds which are mostly oxygenated monoterpenes such as piperitenone oxide (32.55%), pulegone (10.14%), piperitone oxide (8.34%), etc. The microbiological tests were carried out by an agar diffusion test using the essential oil of Mentha suaveolens Ehrh. The microbiological tests were carried out by a diffusion test on agar, these tests are carried out on six microbial strains (five bacteria and one yeast).The inhibitory effect of our oil is well marked against bacteria: Proteus mirabilis (17.50 ± 0.70 mm at 50 µL/mL), Enterococcus faecalis (17.00 ± 1.00 mm at 50 µL/mL) and Staphylococcus coagulase negative (16.33 ± 0.57 mm at 50 µL/mL) while it was moderate against Escherichia coli (14.33 ± 1.15 mm at 50 µL/mL) and Streptococcus spp (13.00 ± 0.00 mm at 50 µL/mL) as well as against yeast, Candida albicans (15.33 ± 1.52 mm at 50 µL/mL). It appears from these results that our oil is of high quality and can be used in several areas. The results obtained are therefore promising and thus open the way for manufacturers to use this essential oil of Mentha suaveolens Ehrh in the pharmaceutical, cosmetic, agricultural and food industries.
RESUMEN
The study was designed to explore the corrosion prevention capabilities of Citrullus colocynthis seeds alkaloid-rich extract (CSEA) on MS in a 1 M HCl environment by use of electrochemical and theoretical methods. Notably, Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization were used to probe the impact of immersion time and temperature. Energy-dispersive X-ray spectroscopy (EDX) and spanning electron microscopy (SEM) were used to confirm the presence of a protective layer on the substrate surface. Density functional theory (DFT) method was used to optimize the investigated species by use of B3LYP/6-31 + G(d, p) level of theory. The global and local quantum chemical reactivity descriptors were calculated to explore the inhibition corrosion efficiency and to identify the most favorable sites for electrophilic and nucleophilic attacks. Monte Carlo (MC) and molecular dynamics simulation (MDS) methods were used to study the interactions between corrosion inhibitor and metal surface. Noteworthy, results showed that CSEA exhibited an impressive inhibition efficiency, which reached 94.3% with a concentration of 2 g/L at 298 K. Potentiodynamic polarization revealed that the extract acted as a mixed-type inhibitor. Nyquist graphs showed that charge-transfer resistance and dæouble-layer capacitance both rised with increasing CSEA concentration, suggesting better inhibition efficiency. Notably, the Langmuir adsorption isotherm is well-aligned with the adsorption of inhibitor compounds. Importantly, all aforementioned theoretical methods were in agreement with the experimental findings. The outcome of the present work supported using Citrullus colocynthis seeds alkaloid-rich extract as ecofriendly agents to prevent corrosion.
RESUMEN
The study aims to synthesize two green pyrazole compounds, N-((1H-pyrazol-1-yl)methyl)-4-nitroaniline (L4) and ethyl 5-methyl-1-(((4-nitrophenyl)amino)methyl)-1H-pyrazole-3-carboxylate (L6), and test their action as corrosion inhibitors for carbon steel (CS) in a 1 M HCl solution. Both chemical and electrochemical methods, namely, gravimetric measurements (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS), were used to assess the efficiency of the investigated molecules. DFT calculations at B3LYP/6-31++G (d, p) and molecular dynamics simulation were used to carry out quantum chemical calculations in order to link their electronic characteristics with the findings of experiments. The organic products exhibited good anticorrosion ability, with maximum inhibition efficiencies (IE %) of 91.8 and 90.8% for 10-3 M L6 and L4, respectively. In accordance with PDP outcomes, L6 and L4 inhibitors act as mixed-type inhibitors. Assessment of the temperature influence evinces that both L4 and L6 are chemisorbed on CS. The adsorption of L4 and L6 on CS appears to follow the Langmuir isotherm. Scanning electron microscopy and UV-visible disclose the constitution of a barrier layer, limiting the accessibility of corrosive species to the CS surface. Theoretical studies were performed to support the results derived from experimental techniques (WL, PDP, and EIS).
RESUMEN
A novel double-open-cubane (NNCO)6Co4Cl2 cluster with a Co4O6 core was made available under aqua-ultrasonic open atmosphere conditions for the first time. The ultrasonic clusterization of the (3,5-dimethyl-1H-pyrazol-1-yl)methanol (NNCOH) ligand with CoCl2·6H2O salts in ethanol yielded a high-purity and high-yield cluster product. Energy-dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and ultraviolet (UV)-visible techniques were used to elucidate the clusterization process. The double-open-Co4O6 cubane structure of the (NNCO)6Co4Cl2 cluster was solved by synchrotron single-crystal X-ray diffraction (SXRD) and supported by density functional theory (DFT) optimization and thermogravimetric/differential TG (TG/DTG) measurements; moreover, the DFT structural parameters correlated with the ones determined by SXRD. Molecular electrostatic potential (MEP), Mulliken atomic charge/natural population analysis (MAC/NPA), highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of states (DOS), and GRD quantum analyses were computed at the DFT/B3LYP/6-311G(d,p) theory level. The thermal behavior of the cluster was characterized to support the formation of the Co4O6 core as a stable final product. The catalytic property of the (NNCO)6Co4Cl2 cluster was predestined for the oxidation process of 3,5-DTBC diol (3,5-di-tert-butylbenzene-1,2-diol) to 3,5-DTBQ dione (3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione).
RESUMEN
BACKGROUND: Studies on the interaction between bioactive molecules and HIV-1 virus have been the focus of recent research in the scope of medicinal chemistry and pharmacology. OBJECTIVE: Investigating the structural parameters and physico-chemical properties of elucidating and identifying the antiviral pharmacophore sites. METHODS: A mixed computational Petra/Osiris/Molinspiration/DFT (POM/DFT) based model has been developed for the identification of physico-chemical parameters governing the bioactivity of 22 3-hydroxy-indolin-2-one derivatives of diacetyl-L-tartaric acid and aromatic amines containing combined antiviral/antitumor/antibacterial pharmacophore sites. Molecular docking study was carried out with HIV-1 integrase (pdb ID: 5KGX) in order to provide information about interactions in the binding site of the enzyme. RESULTS: The POM analyses of physico-chemical properties and geometrical parameters of compounds 3a-5j, show that they are bearing a two combined (O,O)-pockets leading to a special platform which is able to coordinate two transition metals. The increased activity of series 3a-5j, as compared to standard drugs, contains (Osp2,O sp3,O sp2)-pharmacophore site. The increase in bioactivity from 4b (R1, R2 = H, H) to 3d (R1, R2 = 4-Br, 2-OCH3) could be attributed to the existence of π-charge transfer from para-bromo-phenyl to its amid group (COδ---NHδ+). Similar to the indole-based reference ligand (pdb: 7SK), compound 3d forms hydrogen bonding interactions between the residues Glu170, Thr174 and His171 of HIV-1 integrase in the catalytic core domain of the enzyme. CONCLUSION: Study confirmed the importance of oxygen atoms, especially from the methoxy group of the phenyl ring, and electrophilic amide nitrogen atom for the formation of interactions.
Asunto(s)
Fármacos Anti-VIH/farmacología , Integrasa de VIH/efectos de los fármacos , Indoles/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Sitios de Unión , Teoría Funcional de la Densidad , Inhibidores de Integrasa VIH/síntesis química , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Indoles/síntesis química , Indoles/química , Ligandos , Simulación del Acoplamiento Molecular , Relación Estructura-ActividadRESUMEN
Thiophene-2-carbohydrazide as a novel small-molecule amide tautomer has been synthesized with an acceptable yield under microwave radiation (MW) conditions. The amide imidic thiophene-2-carbohydrazide prototropic tautomerization via single proton intramigration was computed using the DFT B3LYP/6-311G(d,p) level of theory. The endo-isomer amide structure of thiophene-2-carbohydrazide was proved by XRD and is considered to be the kinetically favored isomer. The DFT-structure parameters were compared to their corresponding XRD-experimental parameters. Several H-bond interactions were detected in the crystal lattice experimentally using the XRD-packing model then correlated to MEP and HSA calculations. The manual and calculated electronic parameters such as, frontier molecular orbital energies, excitation energy, absorption, dipole moment, DOS, GRD quantum parameters and TD-SCF/B3LYP were DFT computed. The thiophene-2-carbohydrazide isomers together with their prototropic (E)/(Z)-thiophene-2-carbohydrazonic acid tautomers were docked against 1BNA DNA. FWO and KAS isoconversional kinetic methods were applied, and the thermal behavior and estimated E a-α relations were determined.
RESUMEN
A new N3S2 pentadentate Schiff base ligand derived from 5-bromothiophene-2-carbaldehyde, (E)-N1-((5-bromothiophen-2-yl)methylene)-N2-(2-((E)-((5-bromothiophen-2-yl)-methylene amino) ethyl ethane-1,2-diamine, is prepared. The ligand and its complexes are subjected to extensive physical and theoretical analyses and the results are consistent with their predicted compositions. Dicationic Cu(ii) complexes ([CuN3S2]X2) with a coordination number of 5 are proposed on the basis of the spectral data with N3S2 serving as a pentadentate ligand. The prepared complexes display a square pyramidal geometry around the Cu(ii) center. TG shows different thermal behavior for the N3S2 ligand and its complexes. Solvatochromism of the complexes is promoted by the polarity of the solvent used. A one-electron transfer Cu(ii)/Cu(i) reversible redox reaction is promoted by CV. SEM and EDS of the free ligand and its complexes support the morphology and composition changes observed upon the complexation of Cu(ii). As an outstanding goal to develop anticancer new metal chemotherapy, preliminary studies of the binding of the desired complexes with DNA were carried out, as it is through judging the strength of interactions that a future drug can be designed and synthesized. The viscosity and absorption results obtained for complex 1 indicated its enhanced CT-DNA binding properties as compared to those of complex 2 with K b values of 3.2 × 105 and 2.5 × 105 M-1, respectively.
RESUMEN
Diglycidyl amino benzene (DGAB) epoxy prepolymer was investigated using Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. Then, we highlighted the usefulness of DGAB epoxy prepolymer to improve the resistance of carbon steel (CS) in hydrochloric acid (1.0 M HCl) using weight loss (WL), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), scanning electron microscope (SEM), atomic force microscopy (AFM), density functional theory (DFT) and complexation calculations, molecular dynamics (MD) and meansquaredisplacement (MSD) simulations. Highest inhibitory efficiencies for the WL, EIS and PDP methods at 10-3 M of DGAB are 90.8, 96.3 and 95.9%, respectively. SEM and AFM micrographs demonstrated that the epoxy prepolymer could effectively block the acid attack by chemisorption on the surface of the carbon steel, the high correlation coefficient and low Standard Deviation (SD) and low Sum of Squares (SS) value gave the best fit for Langmuir isotherm. PDP data suggested that the epoxy prepolymer could provide excellent corrosion performance and showed a mixed-type inhibitor with predominant cathodic effectiveness. Investigate of the inhibitory layer and the potential mechanism was conceptually evaluated using DFT, MD simulations, radial distribution function (RDF) and mean square displacement (MSD).
RESUMEN
Two new 7-N,N'-dialkylaminomethyl-8-Hydroxyquinolines, namely 7-N,N'-dipropylaminomethyl-8-Hydroxyquinoline (DPQ) and 7-N,N'-dimethylaminomethyl-8-Hydroxyquinoline (DMQ), were synthesized and characterized using 1H/13C NMR and Elemental analysis methods. Corrosion inhibition effect of DMP and DPQ for C40E steel in 1 M HCl was evaluated at different concentrations (10-3 to 10-6M) and temperatures (298 to 328 K) using several experimental and computational approaches. Weight loss and electrochemical studies showed that protection efficiencies (ηmax) of DPQ and DMQ increase with increase in concentrations. The DPQ and DMQ showed maximum efficiencies of 96.1% and 94.4%, respectivelyat 10-3 M. Polarization measurements showed that DMQ and DPQ act as mixed type corrosion inhibitors. Adsorption of DPQ and DMQ on C40E steel in 1 M HCl obeyed the Langmuir adsorption isotherm. Variation in surface morphology of corroded metallic surface with and without DMQ and DPQ was demonstrated using scanning electron microscopy. Molecular dynamics (MD) simulations studies showed that DPQ and DMQ acquire the flat or horizontal orientation over the C40E steel. DFT analyses revealed that both DPQ and DMQ interact with the C40E steelusing electron-sharing(donor-acceptor)mechanism. Computational analyses conducted using DFT and MD simulations well corroborate the experimental results.
RESUMEN
Under mode of ultrasonic vibration, the neutral octahedral mononuclear [trans-CuBr2(Nâ¯â©â¯N)2]·3H2O complex with Nâ¯â©â¯Nâ¯=â¯2,2-dimethylpropane-1,3-diamine was obtained. The structure of the desired complex was characterized by UV-Vis. spectroscopy, FT-IR, EDX, MS, SEM, TG/DTA and CHN-analysis. The octahedral-structure of the desired Cu(II) complex was proven via XRD single-crystal diffraction and its molecular interactions were computed by Hirschfeld surface analysis. Alcohol (as solvent) and short ultrasonic vibration dose period played a critical role in sonochemistry synthesis of octahedral neutral trans-CuBr2(Nâ¯â©â¯N)2 complex instead of trigonal bi-pyramidal monocation [CuBr(Nâ¯â©â¯N)2]Br one. Due to the Jahn-Teller effect, the complex exhibited a trans bonds elongation along Br-Cu-Br axis originating a distorted-octahedral Cu(II), as revealed by the XRD measurements (Br-Cuâ¯=â¯3.04â¯Å). Therefore, the Solvatochromic behavior of the complex was successfully performed since the trans di-bromide ions are loosely coordinated to Cu(II) center, the change in complex solutions colors by using different solvents which can be detected even by naked-eye supported atypical Jahn-Teller elongation effect formation. TG/DTA and Flynn Wall Ozawa (FWO) isoconversional kinetic methods were applied for the complex to figure out the thermal behavior, kinetic of the ligands de-structured and estimate its Ea/α relation. The complex binding mode to the CT-DNA was examined by UV-vis. spectroscopic, melting curve, CV and viscosity tests. The complex exhibited very strong DNA binding via an intercalation mode of coordination with Kbâ¯=â¯6.5â¯×â¯105 value.
Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Cobre/química , ADN/metabolismo , Solventes/química , Ondas Ultrasónicas , Animales , Bovinos , Técnicas de Química Sintética , Cristalografía por Rayos X , Diaminas/química , Electroquímica , Cinética , Ligandos , Modelos Moleculares , Conformación Molecular , EstereoisomerismoRESUMEN
This work deals with the synthesis and characterization of the novel 5-((5-chloro-1H-indol-2-yl)methylene)-1,3-diethyl-2-thioxodihydro-pyrimidine-4,6(1H,5H)-dione π-bridge (D-A-D) donor-acceptor-donor compound. Its exo-isomer structure has been proven by XRD-single-crystal analysis for the first time. The IR, UV-Vis., MS, CHN-, 1H and 13C NMR analysis were also carried out. The DFT-optimized structural-parameters were matched with the XRD-crystallographic data. The experimental-XRD-interactions in the lattice were compared to the computed Hirshfeld analysis (HSA), MEP map and Mulliken charge population. The DFT/6-311G(d) calculations like IR/B3LYP, TD-SCF, HOMO-LUMO, GRD and GIAO-NMR have been compared to their corresponding experimental parameters. Non-linear optical (NLO) crystal theoretical-analysis was carried out then compared to urea reference. The compound thermal activity was evaluated in an open-atmosphere by TG/DTG analysis.