Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 105(4): 301-312, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38346795

RESUMEN

Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this ß-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based ß-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.


Asunto(s)
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL11/metabolismo , Transducción de Señal , Ligandos , Unión Competitiva
2.
J Chem Inf Model ; 63(21): 6696-6705, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831965

RESUMEN

Photoswitchable (PSW) molecules offer an attractive opportunity for the optical control of biological processes. However, the successful design of such compounds remains a challenging multioptimization endeavor, resulting in several biological target classes still relatively poorly explored by photoswitchable ligands, as is the case for G protein-coupled receptors (GPCRs). Here, we present the PSW-Designer, a fully open-source computational platform, implemented in the KNIME Analytics Platform, to design and virtually screen novel photoswitchable ligands for photopharmacological applications based on privileged scaffolds. We demonstrate the applicability of the PSW-Designer to GPCRs and assess its predictive capabilities via two retrospective case studies. Furthermore, by leveraging bioactivity information on known ligands, typical and atypical strategies for photoswitchable group incorporation, and the increasingly structural information available for biological targets, the PSW-Design will facilitate the design of novel photoswitchable molecules with improved photopharmacological properties and increased binding affinity shifts upon illumination for GPCRs and many other protein targets.


Asunto(s)
Receptores Acoplados a Proteínas G , Estudios Retrospectivos , Receptores Acoplados a Proteínas G/química , Ligandos
3.
Biochem Pharmacol ; : 116396, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942089

RESUMEN

This study introduces (S)-Opto-prop-2, a second-generation photoswitchable ligand designed for precise modulation of ß2-adrenoceptor (ß2AR). Synthesised by incorporating an azobenzene moiety with propranolol, (S)-Opto-prop-2 exhibited a high PSScis (photostationary state for cis isomer) percentage (∼90 %) and a favourable half-life (>10 days), facilitating diverse bioassay measurements. In vitro, the cis-isomer displayed substantially higher ß2AR binding affinity than the trans-isomer (1000-fold), making (S)-Opto-prop-2 one of the best photoswitchable GPCR (G protein-coupled receptor) ligands reported so far. Molecular docking of (S)-Opto-prop-2 in the X-ray structure of propranolol-bound ß2AR followed by site-directed mutagenesis studies, identified D1133.32, N3127.39 and F2896.51 as crucial residues that contribute to ligand-receptor interactions at the molecular level. In vivo efficacy was assessed using a rabbit ocular hypertension model, revealing that the cis isomer mimicked propranolol's effects in reducing intraocular pressure, while the trans isomer was inactive. Dynamic optical modulation of ß2AR by (S)-Opto-prop-2 was demonstrated in two different cAMP bioassays and using live-cell confocal imaging, indicating reversible and dynamic control of ß2AR activity using the new photopharmacology tool. In conclusion, (S)-Opto-prop-2 emerges as a promising photoswitchable ligand for precise and reversible ß2AR modulation with light. The new tool shows superior cis-on binding affinity, one of the largest reported differences in affinity (1000-fold) between its two configurations, in vivo efficacy, and dynamic modulation. This study contributes valuable insights into the evolving field of photopharmacology, offering a potential avenue for targeted therapy in ß2AR-associated pathologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA