Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 524(7563): 114-8, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26200337

RESUMEN

Cells require nucleotides to support DNA replication and repair damaged DNA. In addition to de novo synthesis, cells recycle nucleotides from the DNA of dying cells or from cellular material ingested through the diet. Salvaged nucleosides come with the complication that they can contain epigenetic modifications. Because epigenetic inheritance of DNA methylation mainly relies on copying of the modification pattern from parental strands, random incorporation of pre-modified bases during replication could have profound implications for epigenome fidelity and yield adverse cellular phenotypes. Although the salvage mechanism of 5-methyl-2'deoxycytidine (5mdC) has been investigated before, it remains unknown how cells deal with the recently identified oxidized forms of 5mdC: 5-hydroxymethyl-2'deoxycytidine (5hmdC), 5-formy-2'deoxycytidine (5fdC) and 5-carboxyl-2'deoxycytidine (5cadC). Here we show that enzymes of the nucleotide salvage pathway display substrate selectivity, effectively protecting newly synthesized DNA from the incorporation of epigenetically modified forms of cytosine. Thus, cell lines and animals can tolerate high doses of these modified cytidines without any deleterious effects on physiology. Notably, by screening cancer cell lines for growth defects after exposure to 5hmdC, we unexpectedly identify a subset of cell lines in which 5hmdC or 5fdC administration leads to cell lethality. Using genomic approaches, we show that the susceptible cell lines overexpress cytidine deaminase (CDA). CDA converts 5hmdC and 5fdC into variants of uridine that are incorporated into DNA, resulting in accumulation of DNA damage, and ultimately, cell death. Our observations extend current knowledge of the nucleotide salvage pathway by revealing the metabolism of oxidized epigenetic bases, and suggest a new therapeutic option for cancers, such as pancreatic cancer, that have CDA overexpression and are resistant to treatment with other cytidine analogues.


Asunto(s)
Citidina Desaminasa/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Citosina/metabolismo , Citosina/farmacología , Epigénesis Genética , Neoplasias/tratamiento farmacológico , 5-Metilcitosina/metabolismo , 5-Metilcitosina/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citidina/química , Citidina/farmacología , Citidina Desaminasa/genética , Citosina/análogos & derivados , Citosina/química , ADN/biosíntesis , ADN/química , Daño del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Desoxicitidina/farmacología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Nucleótidos/farmacología , Oxidación-Reducción , Fosfotransferasas/metabolismo , Especificidad por Sustrato , Regulación hacia Arriba , Uridina/análogos & derivados , Uridina/química , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA