Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(15): e2215275120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011214

RESUMEN

The Gulf of Mexico is the largest offshore fossil fuel production basin in the United States. Decisions on expanding production in the region legally depend on assessments of the climate impact of new growth. Here, we collect airborne observations and combine them with previous surveys and inventories to estimate the climate impact of current field operations. We evaluate all major on-site greenhouse gas emissions, carbon dioxide (CO2) from combustion, and methane from losses and venting. Using these findings, we estimate the climate impact per unit of energy of produced oil and gas (the carbon intensity). We find high methane emissions (0.60 Tg/y [0.41 to 0.81, 95% confidence interval]) exceeding inventories. This elevates the average CI of the basin to 5.3 g CO2e/MJ [4.1 to 6.7] (100-y horizon) over twice the inventories. The CI across the Gulf varies, with deep water production exhibiting a low CI dominated by combustion emissions (1.1 g CO2e/MJ), while shallow federal and state waters exhibit an extraordinarily high CI (16 and 43 g CO2e/MJ) primarily driven by methane emissions from central hub facilities (intermediaries for gathering and processing). This shows that production in shallow waters, as currently operated, has outsized climate impact. To mitigate these climate impacts, methane emissions in shallow waters must be addressed through efficient flaring instead of venting and repair, refurbishment, or abandonment of poorly maintained infrastructure. We demonstrate an approach to evaluate the CI of fossil fuel production using observations, considering all direct production emissions while allocating to all fossil products.

2.
Environ Sci Technol ; 56(4): 2143-2152, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35102741

RESUMEN

Reduction of fossil fuel-related methane emissions has been identified as an essential means for climate change mitigation, but emission source identification remains elusive for most oil and gas production basins in the world. We combine three complementary satellite data sets to survey single methane emission sources on the west coast of Turkmenistan, one of the largest methane hotspots in the world. We found 29 different emitters, with emission rates >1800 kg/h, active in the 2017-2020 time period, although older satellite data show that this type of emission has been occurring for decades. We find that all sources are linked to extraction fields mainly dedicated to crude oil production, where 24 of them are inactive flares venting gas. The analysis of time series suggests a causal relationship between the decrease in flaring and the increase in venting. At the regional level, 2020 shows a substantial increase in the number of methane plume detections concerning previous years. Our results suggest that these large venting point sources represent a key mitigation opportunity as they emanate from human-controlled facilities, and that new satellite methods promise a revolution in the detection and monitoring of methane point emissions worldwide.


Asunto(s)
Contaminantes Atmosféricos , Petróleo , Contaminantes Atmosféricos/análisis , Humanos , Metano/análisis , Gas Natural/análisis
3.
Proc Natl Acad Sci U S A ; 115(39): 9720-9725, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201704

RESUMEN

Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH4), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N2O), a long-lived greenhouse gas. Based on the belief that minimizing CH4 from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N2O emissions per hectare can be three times higher (33 kg-N2O⋅ha-1⋅season-1) than the maximum previously reported. Correlations between N2O emissions and management parameters suggest that N2O emissions from rice across the Indian subcontinent might be 30-45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N2O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N2O and CH4 emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N2O and CH4 emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.


Asunto(s)
Cambio Climático , Óxido Nitroso/metabolismo , Oryza/metabolismo , Abastecimiento de Agua , Producción de Cultivos , Gases de Efecto Invernadero/metabolismo , India
4.
Environ Sci Technol ; 54(21): 13926-13934, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33058723

RESUMEN

Methane emission fluxes were estimated for 71 oil and gas well pads in the western Permian Basin (Delaware Basin), using a mobile laboratory and an inverse Gaussian dispersion method (OTM 33A). Sites with emissions that were below detection limit (BDL) for OTM 33A were recorded and included in the sample. Average emission rate per site was estimated by bootstrapping and by maximum likelihood best log-normal fit. Sites had to be split into "complex" (sites with liquid storage tanks and/or compressors) and "simple" (sites with only wellheads/pump jacks/separators) categories to achieve acceptable log-normal fits. For complex sites, the log-normal fit depends heavily on the number of BDL sites included. As more BDL sites are included, the log-normal distribution fit to the data is falsely widened, overestimating the mean, highlighting the importance of correctly characterizing low end emissions when using log-normal fits. Basin-wide methane emission rates were estimated for the production sector of the New Mexico portion of the Permian and range from ∼520 000 tons per year, TPY (bootstrapping, 95% CI: 300 000-790 000) to ∼610 000 TPY (log-normal fit method, 95% CI: 330 000-1 000 000). These estimates are a factor of 5.5-9.0 times greater than EPA National Emission Inventory (NEI) estimates for the region.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Laboratorios , Metano/análisis , Gas Natural/análisis , New Mexico
5.
Proc Natl Acad Sci U S A ; 112(51): 15597-602, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644584

RESUMEN

Published estimates of methane emissions from atmospheric data (top-down approaches) exceed those from source-based inventories (bottom-up approaches), leading to conflicting claims about the climate implications of fuel switching from coal or petroleum to natural gas. Based on data from a coordinated campaign in the Barnett Shale oil and gas-producing region of Texas, we find that top-down and bottom-up estimates of both total and fossil methane emissions agree within statistical confidence intervals (relative differences are 10% for fossil methane and 0.1% for total methane). We reduced uncertainty in top-down estimates by using repeated mass balance measurements, as well as ethane as a fingerprint for source attribution. Similarly, our bottom-up estimate incorporates a more complete count of facilities than past inventories, which omitted a significant number of major sources, and more effectively accounts for the influence of large emission sources using a statistical estimator that integrates observations from multiple ground-based measurement datasets. Two percent of oil and gas facilities in the Barnett accounts for half of methane emissions at any given time, and high-emitting facilities appear to be spatiotemporally variable. Measured oil and gas methane emissions are 90% larger than estimates based on the US Environmental Protection Agency's Greenhouse Gas Inventory and correspond to 1.5% of natural gas production. This rate of methane loss increases the 20-y climate impacts of natural gas consumed in the region by roughly 50%.

6.
Environ Sci Technol ; 51(21): 13008-13017, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29039181

RESUMEN

Airborne measurements of methane emissions from oil and gas infrastructure were completed over two regions of Alberta, Canada. These top-down measurements were directly compared with region-specific bottom-up inventories that utilized current industry-reported flaring and venting volumes (reported data) and quantitative estimates of unreported venting and fugitive sources. For the 50 × 50 km measurement region near Red Deer, characterized by natural gas and light oil production, measured methane fluxes were more than 17 times greater than that derived from directly reported data but consistent with our region-specific bottom-up inventory-based estimate. For the 60 × 60 km measurement region near Lloydminster, characterized by significant cold heavy oil production with sand (CHOPS), airborne measured methane fluxes were five times greater than directly reported emissions from venting and flaring and four times greater than our region-specific bottom up inventory-based estimate. Extended across Alberta, our results suggest that reported venting emissions in Alberta should be 2.5 ± 0.5 times higher, and total methane emissions from the upstream oil and gas sector (excluding mined oil sands) are likely at least 25-50% greater than current government estimates. Successful mitigation efforts in the Red Deer region will need to focus on the >90% of methane emissions currently unmeasured or unreported.


Asunto(s)
Metano , Yacimiento de Petróleo y Gas , Contaminantes Atmosféricos , Alberta , Gas Natural
7.
Environ Sci Technol ; 50(9): 4877-86, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27045743

RESUMEN

Oil and gas (O&G) well pads with high hydrocarbon emission rates may disproportionally contribute to total methane and volatile organic compound (VOC) emissions from the production sector. In turn, these emissions may be missing from most bottom-up emission inventories. We performed helicopter-based infrared camera surveys of more than 8000 O&G well pads in seven U.S. basins to assess the prevalence and distribution of high-emitting hydrocarbon sources (detection threshold ∼ 1-3 g s(-1)). The proportion of sites with such high-emitting sources was 4% nationally but ranged from 1% in the Powder River (Wyoming) to 14% in the Bakken (North Dakota). Emissions were observed three times more frequently at sites in the oil-producing Bakken and oil-producing regions of mixed basins (p < 0.0001, χ(2) test). However, statistical models using basin and well pad characteristics explained 14% or less of the variance in observed emission patterns, indicating that stochastic processes dominate the occurrence of high emissions at individual sites. Over 90% of almost 500 detected sources were from tank vents and hatches. Although tank emissions may be partially attributable to flash gas, observed frequencies in most basins exceed those expected if emissions were effectively captured and controlled, demonstrating that tank emission control systems commonly underperform. Tanks represent a key mitigation opportunity for reducing methane and VOC emissions.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos , Metano , Encuestas y Cuestionarios , Wyoming
8.
Environ Sci Technol ; 49(13): 8167-74, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148555

RESUMEN

Emissions from natural gas production sites are characterized by skewed distributions, where a small percentage of sites-commonly labeled super-emitters-account for a majority of emissions. A better characterization of super-emitters is needed to operationalize ways to identify them and reduce emissions. We designed a conceptual framework that functionally defines superemitting sites as those with the highest proportional loss rates (methane emitted relative to methane produced). Using this concept, we estimated total methane emissions from natural gas production sites in the Barnett Shale; functionally superemitting sites accounted for roughly three-fourths of total emissions. We discuss the potential to reduce emissions from these sites, under the assumption that sites with high proportional loss rates have excess emissions resulting from abnormal or otherwise avoidable operating conditions, such as malfunctioning equipment. Because the population of functionally superemitting sites is not expected to be static over time, continuous monitoring will likely be necessary to identify them and improve their operation. This work suggests that achieving and maintaining uniformly low emissions across the entire population of production sites will require mitigation steps at a large fraction of sites.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Gas Natural/análisis , Ambiente , Sedimentos Geológicos/química , Texas
9.
Environ Sci Technol ; 49(1): 633-40, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25488196

RESUMEN

Emissions from 377 gas actuated (pneumatic) controllers were measured at natural gas production sites and a small number of oil production sites, throughout the United States. A small subset of the devices (19%), with whole gas emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95% of emissions. More than half of the controllers recorded emissions of 0.001 scf/h or less during 15 min of measurement. Pneumatic controllers in level control applications on separators and in compressor applications had higher emission rates than controllers in other types of applications. Regional differences in emissions were observed, with the lowest emissions measured in the Rocky Mountains and the highest emissions in the Gulf Coast. Average methane emissions per controller reported in this work are 17% higher than the average emissions per controller in the 2012 EPA greenhouse gas national emission inventory (2012 GHG NEI, released in 2014); the average of 2.7 controllers per well observed in this work is higher than the 1.0 controllers per well reported in the 2012 GHG NEI.


Asunto(s)
Contaminantes Atmosféricos/análisis , Equipos y Suministros , Metano/análisis , Gas Natural/análisis , Yacimiento de Petróleo y Gas , Estados Unidos
10.
Environ Sci Technol ; 49(1): 641-8, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25488307

RESUMEN

Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21,000-35,000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10,000-50,000 scf/event). For wells with plunger lifts, emissions averaged 1000-10,000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12,000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190-400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings.


Asunto(s)
Contaminantes Atmosféricos/análisis , Equipos y Suministros , Metano/análisis , Gas Natural/análisis , Yacimiento de Petróleo y Gas , Factores de Tiempo , Estados Unidos
11.
Environ Sci Technol ; 49(13): 8147-57, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148553

RESUMEN

Methane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were estimated using multiple data sets, including new empirical measurements at regional O&G sites and a national study of gathering and processing facilities. Spatially referenced activity data were compiled from federal and state databases and combined with O&G facility emission factors calculated using Monte Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in the observed emissions distributions. Total methane emissions in the 25-county Barnett Shale region in October 2013 were estimated to be 72,300 (63,400-82,400) kg CH4 h(-1). O&G emissions were estimated to be 46,200 (40,000-54,100) kg CH4 h(-1) with 19% of emissions from fat-tail sites representing less than 2% of sites. Our estimate of O&G emissions in the Barnett Shale region was higher than alternative inventories based on the United States Environmental Protection Agency (EPA) Greenhouse Gas Inventory, EPA Greenhouse Gas Reporting Program, and Emissions Database for Global Atmospheric Research by factors of 1.5, 2.7, and 4.3, respectively. Gathering compressor stations, which accounted for 40% of O&G emissions in our inventory, had the largest difference from emission estimates based on EPA data sources. Our inventory's higher O&G emission estimate was due primarily to its more comprehensive activity factors and inclusion of emissions from fat-tail sites.


Asunto(s)
Contaminantes Atmosféricos/análisis , Sedimentos Geológicos/química , Metano/análisis , Efecto Invernadero , Texas , Estados Unidos , United States Environmental Protection Agency
12.
Environ Sci Technol ; 48(9): 5314-21, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24712292

RESUMEN

Hourly ambient hydrocarbon concentration data were collected, in the Barnett Shale Natural Gas Production Region, using automated gas chromatography (auto-GC), for the period from April 2010 to December 2011. Data for three sites were compared: a site in the geographical center of the natural gas production region (Eagle Mountain Lake (EML)); a rural/suburban site at the periphery of the production region (Flower Mound Shiloh), and an urban site (Hinton). The dominant hydrocarbon species observed in the Barnett Shale region were light alkanes. Analyses of daily, monthly, and hourly patterns showed little variation in relative composition. Observed concentrations were compared to concentrations predicted using a dispersion model (AERMOD) and a spatially resolved inventory of volatile organic compounds (VOC) emissions from natural gas production (Barnett Shale Special Emissions Inventory) prepared by the Texas Commission on Environmental Quality (TCEQ), and other emissions information. The predicted concentrations of VOC due to natural gas production were 0-40% lower than background corrected measurements, after accounting for potential under-estimation of certain emission categories. Hourly and daily variations in observed, background corrected concentrations were primarily explained by variability in meteorology, suggesting that episodic emission events had little impact on hourly averaged concentrations. Total emissions for VOC from natural gas production sources are estimated to be approximately 25,300 tons/yr, when accounting for potential under-estimation of certain emission categories. This region produced, in 2011, approximately 5 bcf/d of natural gas (100 Gg/d) for a VOC to natural gas production ratio (mass basis) of 0.0006.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire , Hidrocarburos/análisis , Gas Natural , Modelos Teóricos , Texas , Compuestos Orgánicos Volátiles/análisis
13.
Sci Total Environ ; 912: 169645, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38157914

RESUMEN

The Canadian government aims to achieve a 40-45 % reduction of oil and gas (O&G) methane (CH4) emissions by 2025, and 75 % by 2030, although recent studies consistently show that Canada's federal inventory underestimates emissions by a factor of 1.4 to 2.0. We conducted aerial mass balance measurements at sixteen upstream O&G facilities in Alberta between September 29 and November 6, 2021, and our measurements revealed that emissions were, on average, 1.7 (standard deviation (SD): 0.6) times higher than the reported emissions for the same year. On a subsequent campaign from August 12 to September 27, 2022, we focused on understudied O&G sectors covering 24 midstream and end-use facilities. These sites were found to be emitting, on average, 3.4 (SD: 1.1) times more CH4 than reported. By extrapolating our measurements to Alberta, we found that underground gas storage contributed to 1.6 % of provincial O&G emissions, followed by natural gas power stations/refineries less than 1.0 %. The widespread underreporting of CH4 emissions highlights the necessity for more empirical measurements of midstream and end-use facilities.

14.
Environ Sci Technol ; 47(7): 3521-7, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23441728

RESUMEN

Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 µg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.


Asunto(s)
Contaminación del Aire/análisis , Gas Natural/análisis , Electricidad , Geografía , Ozono/análisis , Tamaño de la Partícula , Material Particulado/química , Texas
15.
Nat Commun ; 14(1): 4948, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587101

RESUMEN

Reducing methane emissions from fossil fuel exploitation (oil, gas, coal) is an important target for climate policy, but current national emission inventories submitted to the United Nations Framework Convention on Climate Change (UNFCCC) are highly uncertain. Here we use 22 months (May 2018-Feb 2020) of satellite observations from the TROPOMI instrument to better quantify national emissions worldwide by inverse analysis at up to 50 km resolution. We find global emissions of 62.7 ± 11.5 (2σ) Tg a-1 for oil-gas and 32.7 ± 5.2 Tg a-1 for coal. Oil-gas emissions are 30% higher than the global total from UNFCCC reports, mainly due to under-reporting by the four largest emitters including the US, Russia, Venezuela, and Turkmenistan. Eight countries have methane emission intensities from the oil-gas sector exceeding 5% of their gas production (20% for Venezuela, Iraq, and Angola), and lowering these intensities to the global average level of 2.4% would reduce global oil-gas emissions by 11 Tg a-1 or 18%.

16.
Nat Commun ; 13(1): 2085, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440563

RESUMEN

Eighty percent of US oil and natural gas (O&G) production sites are low production well sites, with average site-level production ≤15 barrels of oil equivalent per day and producing only 6% of the nation's O&G output in 2019. Here, we integrate national site-level O&G production data and previously reported site-level CH4 measurement data (n = 240) and find that low production well sites are a disproportionately large source of US O&G well site CH4 emissions, emitting more than 4 (95% confidence interval: 3-6) teragrams, 50% more than the total CH4 emissions from the Permian Basin, one of the world's largest O&G producing regions. We estimate low production well sites represent roughly half (37-75%) of all O&G well site CH4 emissions, and a production-normalized CH4 loss rate of more than 10%-a factor of 6-12 times higher than the mean CH4 loss rate of 1.5% for all O&G well sites in the US. Our work suggests that achieving significant reductions in O&G CH4 emissions will require mitigation of emissions from low production well sites.


Asunto(s)
Contaminantes Atmosféricos , Gas Natural , Contaminantes Atmosféricos/análisis , Metano/análisis , Gas Natural/análisis , Yacimiento de Petróleo y Gas
17.
Science ; 377(6614): 1566-1571, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36173866

RESUMEN

Flaring is widely used by the fossil fuel industry to dispose of natural gas. Industry and governments generally assume that flares remain lit and destroy methane, the predominant component of natural gas, with 98% efficiency. Neither assumption, however, is based on real-world observations. We calculate flare efficiency using airborne sampling across three basins responsible for >80% of US flaring and combine these observations with unlit flare prevalence surveys. We find that both unlit flares and inefficient combustion contribute comparably to ineffective methane destruction, with flares effectively destroying only 91.1% (90.2, 91.8; 95% confidence interval) of methane. This represents a fivefold increase in methane emissions above present assumptions and constitutes 4 to 10% of total US oil and gas methane emissions, highlighting a previously underappreciated methane source and mitigation opportunity.

19.
Sci Adv ; 6(17): eaaz5120, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494644

RESUMEN

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the Permian Basin, which is among the world's most prolific oil-producing regions and accounts for >30% of total U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a-1, representing the largest methane flux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates a high-resolution satellite data-based atmospheric inversion framework, providing a robust top-down analytical tool for quantifying and evaluating subregional methane emissions.

20.
J Air Waste Manag Assoc ; 68(7): 671-684, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29513645

RESUMEN

Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. IMPLICATIONS: Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Industria del Petróleo y Gas , Alberta , Monitoreo del Ambiente , Etano/análisis , Propano/análisis , Saskatchewan , Dióxido de Silicio , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA