Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 186(16): 3443-3459.e24, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37480851

RESUMEN

Cells contain numerous abundant molecular machines assembled from multiple subunits. Imbalances in subunit production and failed assembly generate orphan subunits that are eliminated by poorly defined pathways. Here, we determined how orphan subunits of the cytosolic chaperonin CCT are recognized. Several unassembled CCT subunits recruited the E3 ubiquitin ligase HERC2 using ZNRD2 as an adaptor. Both factors were necessary for orphan CCT subunit degradation in cells, sufficient for CCT subunit ubiquitination with purified factors, and necessary for optimal cell fitness. Domain mapping and structure prediction defined the molecular features of a minimal HERC2-ZNRD2-CCT module. The structural model, whose key elements were validated in cells using point mutants, shows why ZNRD2 selectively recognizes multiple orphaned CCT subunits without engaging assembled CCT. Our findings reveal how failures during CCT assembly are monitored and provide a paradigm for the molecular recognition of orphan subunits, the largest source of quality control substrates in cells.


Asunto(s)
Chaperonina con TCP-1 , Ubiquitina-Proteína Ligasas , Chaperonina con TCP-1/química , Ubiquitina-Proteína Ligasas/genética , Humanos
2.
Mol Cell ; 63(1): 21-33, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27345149

RESUMEN

We investigated how mitochondrial membrane proteins remain soluble in the cytosol until their delivery to mitochondria or degradation at the proteasome. We show that Ubiquilin family proteins bind transmembrane domains in the cytosol to prevent aggregation and temporarily allow opportunities for membrane targeting. Over time, Ubiquilins recruit an E3 ligase to ubiquitinate bound clients. The attached ubiquitin engages Ubiquilin's UBA domain, normally bound to an intramolecular UBL domain, and stabilizes the Ubiquilin-client complex. This conformational change precludes additional chances at membrane targeting for the client, while simultaneously freeing Ubiquilin's UBL domain for targeting to the proteasome. Loss of Ubiquilins by genetic ablation or sequestration in polyglutamine aggregates leads to accumulation of non-inserted mitochondrial membrane protein precursors. These findings define Ubiquilins as a family of chaperones for cytosolically exposed transmembrane domains and explain how they use ubiquitin to triage clients for degradation via coordinated intra- and intermolecular interactions.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteolisis , Ubiquitinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Sistemas CRISPR-Cas , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Citosol/metabolismo , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Péptidos/metabolismo , Agregado de Proteínas , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Relación Estructura-Actividad , Transfección , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/química , Ubiquitinas/genética
3.
Mol Cell ; 43(4): 599-612, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21855799

RESUMEN

The mechanisms by which ubiquitin ligases are regulated remain poorly understood. Here we describe a series of molecular events that coordinately regulate CHIP, a neuroprotective E3 implicated in protein quality control. Through their opposing activities, the initiator E2, Ube2w, and the specialized deubiquitinating enzyme (DUB), ataxin-3, participate in initiating, regulating, and terminating the CHIP ubiquitination cycle. Monoubiquitination of CHIP by Ube2w stabilizes the interaction between CHIP and ataxin-3, which through its DUB activity limits the length of chains attached to CHIP substrates. Upon completion of substrate ubiquitination, ataxin-3 deubiquitinates CHIP, effectively terminating the reaction. Our results suggest that functional pairing of E3s with ataxin-3 or similar DUBs represents an important point of regulation in ubiquitin-dependent protein quality control. In addition, the results shed light on disease pathogenesis in SCA3, a neurodegenerative disorder caused by polyglutamine expansion in ataxin-3.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Proteínas Represoras/fisiología , Enzimas Ubiquitina-Conjugadoras/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ataxina-3 , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Estrés Fisiológico , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
4.
Science ; 373(6558): 998-1004, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34446601

RESUMEN

In eukaryotic cells, half of all proteins function as subunits within multiprotein complexes. Imbalanced synthesis of subunits leads to unassembled intermediates that must be degraded to minimize cellular toxicity. Here, we found that excess PSMC5, a subunit of the proteasome base, was targeted for degradation by the HERC1 ubiquitin ligase in mammalian cells. HERC1 identified unassembled PSMC5 by its cognate assembly chaperone PAAF1. Because PAAF1 only dissociates after assembly, HERC1 could also engage later assembly intermediates such as the PSMC4-PSMC5-PAAF1 complex. A missense mutant of HERC1 that causes neurodegeneration in mice was impaired in the recognition and ubiquitination of the PSMC5-PAAF1 complex. Thus, proteasome assembly factors can serve as adaptors for ubiquitin ligases to facilitate elimination of unassembled intermediates and maintain protein homeostasis.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Calmodulina/metabolismo , Humanos , Células MCF-7 , Ratones , Mutación , Mutación Missense , Enfermedades Neurodegenerativas/genética , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
5.
Artículo en Inglés | MEDLINE | ID: mdl-30833453

RESUMEN

A defining feature of eukaryotic cells is the segregation of complex biochemical processes among different intracellular compartments. The protein targeting, translocation, and trafficking pathways that sustain compartmentalization must recognize a diverse range of clients via degenerate signals. This recognition is imperfect, resulting in polypeptides at incorrect cellular locations. Cells have evolved mechanisms to selectively recognize mislocalized proteins and triage them for degradation or rescue. These spatial quality control pathways maintain cellular protein homeostasis, become especially important during organelle stress, and might contribute to disease when they are impaired or overwhelmed.


Asunto(s)
Proteínas/metabolismo , Citosol/metabolismo , Homeostasis , Humanos , Unión Proteica , Transporte de Proteínas , Proteolisis , Fracciones Subcelulares/metabolismo
6.
Elife ; 82019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31094677

RESUMEN

We have used misfolded prion protein (PrP*) as a model to investigate how mammalian cells recognize and degrade misfolded GPI-anchored proteins. While most misfolded membrane proteins are degraded by proteasomes, misfolded GPI-anchored proteins are primarily degraded in lysosomes. Quantitative flow cytometry analysis showed that at least 85% of PrP* molecules transiently access the plasma membrane en route to lysosomes. Unexpectedly, time-resolved quantitative proteomics revealed a remarkably invariant PrP* interactome during its trafficking from the endoplasmic reticulum (ER) to lysosomes. Hence, PrP* arrives at the plasma membrane in complex with ER-derived chaperones and cargo receptors. These interaction partners were critical for rapid endocytosis because a GPI-anchored protein induced to misfold at the cell surface was not recognized effectively for degradation. Thus, resident ER factors have post-ER itineraries that not only shield misfolded GPI-anchored proteins during their trafficking, but also provide a quality control cue at the cell surface for endocytic routing to lysosomes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Pliegue de Proteína , Vías Secretoras , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Priones/metabolismo , Proteolisis
7.
Nat Commun ; 6: 8045, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26289944

RESUMEN

Autophagy is an important degradation pathway, which is induced after starvation, where it buffers nutrient deprivation by recycling macromolecules in organisms from yeast to man. While the classical pathway mediating this response is via mTOR inhibition, there are likely to be additional pathways that support the process. Here, we identify Annexin A2 as an autophagy modulator that regulates autophagosome formation by enabling appropriate ATG9A trafficking from endosomes to autophagosomes via actin. This process is dependent on the Annexin A2 effectors ARP2 and Spire1. Annexin A2 expression increases after starvation in cells in an mTOR-independent fashion. This is mediated via Jun N-terminal kinase activation of c-Jun, which, in turn, enhances the trans-activation of the Annexin A2 promoter. Annexin A2 knockdown abrogates starvation-induced autophagy, while its overexpression induces autophagy. Hence, c-Jun-mediated transcriptional responses support starvation-induced autophagy by regulating Annexin A2 expression levels.


Asunto(s)
Anexina A2/metabolismo , Autofagia/fisiología , Regulación de la Expresión Génica/fisiología , Animales , Anexina A2/genética , Proteínas Relacionadas con la Autofagia , Fibroblastos , Genes jun , Células HeLa , Humanos , MAP Quinasa Quinasa 4 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Nat Commun ; 5: 3828, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24819384

RESUMEN

Endosomal protein sorting controls the localization of many physiologically important proteins and is linked to several neurodegenerative diseases. VPS35 is a component of the retromer complex, which mediates endosome-to-Golgi retrieval of membrane proteins such as the cation-independent mannose 6-phosphate receptor. Furthermore, retromer is also required for the endosomal recruitment of the actin nucleation promoting WASH complex. The VPS35 D620N mutation causes a rare form of autosomal-dominant Parkinson's disease (PD). Here we show that this mutant associates poorly with the WASH complex and impairs WASH recruitment to endosomes. Autophagy is impaired in cells expressing PD-mutant VPS35 or lacking WASH. The autophagy defects can be explained, at least in part, by abnormal trafficking of the autophagy protein ATG9A. Thus, the PD-causing D620N mutation in VPS35 restricts WASH complex recruitment to endosomes, and reveals a novel role for the WASH complex in autophagosome formation.


Asunto(s)
Autofagia/genética , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Enfermedad de Parkinson/genética , Proteínas de Transporte Vesicular/genética , Proteínas Relacionadas con la Autofagia , Línea Celular Tumoral , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/genética , Proteínas de Transporte Vesicular/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
9.
Nat Commun ; 5: 4998, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25241929

RESUMEN

Genome-wide association studies have identified several loci associated with Alzheimer's disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover.


Asunto(s)
Autofagia , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Proteínas tau/metabolismo , Animales , Proteína 12 Relacionada con la Autofagia , Línea Celular , Drosophila , Endocitosis , Femenino , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Fagosomas , Unión Proteica , ARN Interferente Pequeño/metabolismo , Factores de Riesgo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transfección , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Pez Cebra
10.
FEBS Lett ; 587(13): 1988-96, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23669359

RESUMEN

Autophagy is a highly conserved intracytoplasmic degradation pathway for proteins, oligomers, organelles and pathogens. It initiates with the formation of a cup-shaped double membrane structure called the phagophore. The membrane origin for autophagosomes has been a key question for the field. ATG9 and ATG16L1, or their yeast orthologues, are key proteins that regulate autophagosome biogenesis, and may be associated with distinct membrane sources. Here we review the biology of autophagy with a focus on ATG16L1 and ATG9, and we summarise the current knowledge of their trafficking in relation to autophagic stimuli and autophagosome formation.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Fagosomas/metabolismo , Animales , Autofagia , Proteínas Relacionadas con la Autofagia , Humanos , Transporte de Proteínas , Proteínas de Transporte Vesicular
11.
Prog Neurobiol ; 97(2): 67-82, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21930185

RESUMEN

In polyglutamine diseases, an abnormally elongated polyglutamine tract results in protein misfolding and accumulation of intracellular aggregates. The length of the polyglutamine expansion correlates with the tendency of the mutant protein to aggregate, as well as with neuronal toxicity and earlier disease onset. Although currently there is no effective cure to prevent or slow down the progression of these neurodegenerative disorders, increasing the clearance of mutant proteins has been proposed as a potential therapeutic approach. The ubiquitin-proteasome system and autophagy are the two main degradative pathways responsible for eliminating misfolded and unnecessary proteins in the cell. We will review some of the studies that have proposed autophagy as a strategy to reduce the accumulation of polyglutamine-expanded protein aggregates and protect against mutant protein neurotoxicity. We will also discuss some of the currently known mechanisms that induce autophagy, which may be beneficial for the treatment of these and other neurodegenerative disorders.


Asunto(s)
Autofagia/fisiología , Enfermedades Neurodegenerativas/metabolismo , Péptidos/metabolismo , Deficiencias en la Proteostasis/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/genética , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Deficiencias en la Proteostasis/genética , Ubiquitina/metabolismo
12.
PLoS One ; 7(6): e39651, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22745803

RESUMEN

The isolation of haploid cell lines has recently allowed the power of forward genetic screens to be applied to mammalian cells. The interest in applying this powerful genetic approach to a mammalian system is only tempered by the limited utility of these screens, if confined to lethal phenotypes. Here we expand the scope of these approaches beyond live/dead screens and show that selection for a cell surface phenotype via fluorescence-activated cell sorting can identify the key molecules in an intracellular pathway, in this case MHC class I antigen presentation. Non-lethal haploid genetic screens are widely applicable to identify genes involved in essentially any cellular pathway.


Asunto(s)
Pruebas Genéticas/métodos , Haploidia , Citometría de Flujo , Fluorescencia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA