Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Gynecol Oncol ; 159(1): 277-284, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32698955

RESUMEN

OBJECTIVE: To investigate the anti-tumor effect of a newly-developed dual inhibitor (APCS-540) of glycogen synthase kinase 3 beta (GSK3B) and histone deacetylases (HDACs) in ovarian cancer cells. METHODS: The effects of APCS-540 on cancer cell proliferation, migration, invasion and cancer stemness were investigated in vitro in human (KURAMOCHI, OVCA420, OVSAHO) and mouse (BR-Luc, ID8, MOSE-HRas-Myc) ovarian cancer cells. Cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cis) cell lines were used to evaluate APCS-540's effect on chemoresistance. The immunocompetent syngeneic mouse model BR-Luc was used to test the effect of APCS-540 on ovarian cancer progression and survival. RESULTS: APCS-540 showed significant anti-tumor effects in vitro in both human and mouse ovarian cancer cells. Importantly, APCS-540 demonstrated marked cytotoxicity against cisplatin-resistant cancer cells and reversed cisplatin-resistance when used in combination with platinum. APCS-540 significantly decreased cancer cell invasion. A significant 66% increase in survival was observed in mice treated with APCS-540 compared to control mice. CONCLUSION: Dual inhibition of GSK3B and HDACs via APCS-540 showed potent anti-tumor activity in vitro and in vivo, suggesting that APCS-540 may provide a novel treatment option for ovarian cancer, including the platinum-resistant disease.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Ratones , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
Gastroenterology ; 155(6): 1985-1998.e5, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30144430

RESUMEN

BACKGROUND & AIMS: Growth, progression, and drug resistance of pancreatic ductal adenocarcinomas (PDACs) have been associated with increased levels and activity of glycogen synthase kinase 3 beta (GSK3B) and histone deacetylases (HDACs). We designed and synthesized molecules that simultaneously inhibit the activities of both enzymes. We tested the effects of one of these molecules, Metavert, in pancreatic cancer cells and mice with pancreatic tumors. METHODS: We tested the ability of Metavert to bind GSK3B and HDACs using surface plasmon resonance. MIA PaCa-2, Bx-PC3, HPAF-II, and HPDE6 cell lines were incubated with different concentrations of Metavert, with or without paclitaxel or gemcitabine, or with other inhibitors of GSK3B and HDACs; cells were analyzed for apoptosis and migration and by immunoblotting, immunofluorescence, and real-time polymerase chain reaction. Krasþ/LSLG12D;Trp53þ/LSLR172H;Pdx-1-Cre (KPC) mice (2 months old) were given injections of Metavert (5 mg/kg, 3 times/week) or vehicle (control). B6.129J mice with tumors grown from UN-KPC961-Luc cells were given injections of Metavert or vehicle. Tumors and metastases were counted and pancreata were analyzed by immunohistochemistry. Glucose metabolism was measured using 13C-glucose tracer and mass spectroscopy and flow cytometry. Cytokine levels in blood samples were measured using multiplexing enzyme-linked immunosorbent assay. RESULTS: Metavert significantly reduced survival of PDAC cells but not nontransformed cells; the agent reduced markers of the epithelial-to-mesenchymal transition and stem cells in PDAC cell lines. Cells incubated with Metavert in combination with irradiation and paclitaxel or gemcitabine had reduced survival compared with cells incubated with either agent alone; Metavert increased killing of drug-resistant PDAC cells by paclitaxel and gemcitabine. PDAC cells incubated with Metavert acquired normalized glucose metabolism. Administration of Metavert (alone or in combination with gemcitibine) to KPC mice or mice with syngeneic tumors significantly increased their survival times, slowed tumor growth, prevented tumor metastasis, decreased tumor infiltration by tumor-associated macrophages, and decreased blood levels of cytokines. CONCLUSIONS: In studies of PDAC cells and 2 mouse models of PDAC, we found a dual inhibitor of GSK3B and HDACs (Metavert) to induce cancer cell apoptosis, reduce migration and expression of stem cell markers, and slow growth of tumors and metastases. Metavert had synergistic effects with gemcitabine.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundario , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Gemcitabina
3.
Biomed Pharmacother ; 172: 116283, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377735

RESUMEN

BACKGROUND: Galectins (Gal's) are a family of carbohydrate-binding proteins that are known to support the tumour microenvironment through their immunosuppressive activity and ability to promote metastasis. As such they are attractive therapeutic targets, but little is known about the cellular expression pattern of galectins within the tumour and its neighbouring stromal microenvironment. Here we investigated the cellular expression pattern of Gals within pancreatic ductal adenocarcinoma (PDAC). METHODS: Galectin gene and protein expression were analysed by scRNAseq (n=4) and immunofluorescence imaging (n=19) in fibroblasts and epithelial cells of pancreatic biopsies from PDAC patients. Galectin surface expression was also assessed on tumour adjacent normal fibroblasts and cancer associated primary fibroblasts from PDAC biopsies using flow cytometry. RESULTS: scRNAseq revealed higher Gal-1 expression in fibroblasts and higher Gal-3 and -4 expression in epithelial cells. Both podoplanin (PDPN+, stromal/fibroblast) cells and EpCAM+ epithelial cells expressed Gal-1 protein, with highest expression seen in the stromal compartment. By contrast, significantly more Gal-3 and -4 protein was expressed in ductal cells expressing either EpCAM or PDPN, when compared to the stroma. Ductal Gal-4 cellular expression negatively correlated with ductal Gal-1, but not Gal-3 expression. Higher ductal cellular expression of Gal-1 correlated with smaller tumour size and better patient survival. CONCLUSIONS: In summary, the intricate interplay and cell-specific expression patterns of galectins within the PDAC tissue, particularly the inverse correlation between Gal-1 and Gal-4 in ducts and its significant association with patient survival, highlights the complex molecular landscape underlying PDAC and provides valuable insights for future therapeutic interventions.


Asunto(s)
Benzamidas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Tirosina/análogos & derivados , Humanos , Molécula de Adhesión Celular Epitelial , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Factores de Transcripción , Galectinas/genética , Microambiente Tumoral
4.
Elife ; 122023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37350578

RESUMEN

Pancreatic ductal adenocarcinoma has a poor clinical outcome and responses to immunotherapy are suboptimal. Stromal fibroblasts are a dominant but heterogenous population within the tumor microenvironment and therapeutic targeting of stromal subsets may have therapeutic utility. Here, we combine spatial transcriptomics and scRNA-Seq datasets to define the transcriptome of tumor-proximal and tumor-distal cancer-associated fibroblasts (CAFs) and link this to clinical outcome. Tumor-proximal fibroblasts comprise large populations of myofibroblasts, strongly expressed podoplanin, and were enriched for Wnt ligand signaling. In contrast, inflammatory CAFs were dominant within tumor-distal subsets and expressed complement components and the Wnt-inhibitor SFRP2. Poor clinical outcome was correlated with elevated HIF-1α and podoplanin expression whilst expression of inflammatory and complement genes was predictive of extended survival. These findings demonstrate the extreme transcriptional heterogeneity of CAFs and its determination by apposition to tumor. Selective targeting of tumor-proximal subsets, potentially combined with HIF-1α inhibition and immune stimulation, may offer a multi-modal therapeutic approach for this disease.


Pancreatic cancer is one of the deadliest and most difficult cancers to treat. It responds poorly to immunotherapy for instance, despite this approach often succeeding in enlisting immune cells to fight tumours in other organs. This may be due, in part, to a type of cell called fibroblasts. Not only do these wrap pancreatic tumours in a dense, protective layer, they also foster complex relationships with the cancerous cells: some fibroblasts may fuel tumour growth, while other may help to contain its spread. These different roles may be linked to spatial location, with fibroblasts adopting different profiles depending on their proximity with cancer calls. For example, certain fibroblasts close to the tumour resemble the myofibroblasts present in healing wounds, while those at the periphery show signs of being involved in inflammation. Being able to specifically eliminate pro-cancer fibroblasts requires a better understanding of the factors that shape the role of these cells, and how to identify them. To examine this problem, Croft et al. relied on tumour samples obtained from pancreatic cancer patients. They mapped out the location of individual fibroblasts in the vicinity of the tumour and analysed their gene activity. These experiments helped to reveal the characteristics of different populations of fibroblasts. For example, they showed that the myofibroblast-like cells closest to the tumour exhibited signs of oxygen deprivation; they also produced podoplanin, a protein known to promote cancer progression. In contrast, cells further from the cancer produced more immune-related proteins. Combining these data with information obtained from patients' clinical records, Croft et al. found that samples from individuals with worse survival outcomes often featured higher levels of podoplanin and hypoxia. Inflammatory markers, however, were more likely to be present in individuals with good outcomes. Overall, these findings could help to develop ways to selectively target fibroblasts that support the growth of pancreatic cancer. Weakening these cells could in turn make the tumour accessible to immune cells, and more vulnerable to immunotherapies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Transcriptoma , Pronóstico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Fibroblastos/metabolismo , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA