Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Euro Surveill ; 29(25)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38904109

RESUMEN

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Asunto(s)
Animales Salvajes , Charadriiformes , Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Filogenia , Animales , Gripe Aviar/virología , Gripe Aviar/epidemiología , Finlandia/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Animales Salvajes/virología , Charadriiformes/virología , Brotes de Enfermedades/veterinaria , Granjas , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/epidemiología , Zorros/virología , Aves/virología , Visón/virología
2.
Euro Surveill ; 28(3)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695488

RESUMEN

In October 2022, an outbreak in Europe of highly pathogenic avian influenza (HPAI) A(H5N1) in intensively farmed minks occurred in northwest Spain. A single mink farm hosting more than 50,000 minks was involved. The identified viruses belong to clade 2.3.4.4b, which is responsible of the ongoing epizootic in Europe. An uncommon mutation (T271A) in the PB2 gene with potential public health implications was found. Our investigations indicate onward mink transmission of the virus may have occurred in the affected farm.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Gripe Aviar/epidemiología , Visón , Subtipo H5N1 del Virus de la Influenza A/genética , España/epidemiología , Granjas , Gripe Humana/epidemiología , Filogenia
3.
Euro Surveill ; 28(31)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37535474

RESUMEN

BackgroundOver a 3-week period in late June/early July 2023, Poland experienced an outbreak caused by highly pathogenic avian influenza (HPAI) A(H5N1) virus in cats.AimThis study aimed to characterise the identified virus and investigate possible sources of infection.MethodsWe performed next generation sequencing and phylogenetic analysis of detected viruses in cats.ResultsWe sampled 46 cats, and 25 tested positive for avian influenza virus. The identified viruses belong to clade 2.3.4.4b, genotype CH (H5N1 A/Eurasian wigeon/Netherlands/3/2022-like). In Poland, this genotype was responsible for several poultry outbreaks between December 2022 and January 2023 and has been identified only sporadically since February 2023. Viruses from cats were very similar to each other, indicating one common source of infection. In addition, the most closely related virus was detected in a dead white stork in early June. Influenza A(H5N1) viruses from cats possessed two amino acid substitutions in the PB2 protein (526R and 627K) which are two molecular markers of virus adaptation in mammals. The virus detected in the white stork presented one of those mutations (627K), which suggests that the virus that had spilled over to cats was already partially adapted to mammalian species.ConclusionThe scale of HPAI H5N1 virus infection in cats in Poland is worrying. One of the possible sources seems to be poultry meat, but to date no such meat has been identified with certainty. Surveillance should be stepped up on poultry, but also on certain species of farmed mammals kept close to infected poultry farms.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Gatos , Animales , Humanos , Gripe Humana/epidemiología , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Filogenia , Polonia/epidemiología , Aves , Brotes de Enfermedades/veterinaria , Aves de Corral , Virus de la Influenza A/genética , Mamíferos
5.
Emerg Infect Dis ; 26(7): 1557-1561, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568059

RESUMEN

We report detection of a highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b virus in Europe. This virus was generated by reassortment between H5N8 subtype virus from sub-Saharan Africa and low pathogenicity avian influenza viruses from Eurasia.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , África del Sur del Sahara/epidemiología , Animales , Europa (Continente) , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Virus Reordenados/genética
6.
Arch Virol ; 165(1): 87-96, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31707455

RESUMEN

In May 2017, high mortality of chickens and Muscovy ducks due to the H5N8 highly pathogenic avian influenza virus (HPAIV) was reported in the Democratic Republic of Congo (DR Congo). In this study, we assessed the molecular, antigenic, and pathogenic features in poultry of the H5N8 HPAIV from the 2017 Congolese outbreaks. Phylogenetic analysis of the eight viral gene segments revealed that all 12 DR Congo isolates clustered in clade 2.3.4.4B together with other H5N8 HPAIVs isolated in Africa and Eurasia, suggesting a possible common origin of these viruses. Antigenically, a slight difference was observed between the Congolese isolates and a representative virus from group C in the same clade. After intranasal inoculation with a representative DR Congo virus, high pathogenicity was observed in chickens and Muscovy ducks but not in Pekin ducks. Viral replication was higher in chickens than in Muscovy duck and Pekin duck organs; however, neurotropism was pronounced in Muscovy ducks. Our data confirmed the high pathogenicity of the DR Congo virus in chickens and Muscovy ducks, as observed in the field. National awareness and strengthening surveillance in the region are needed to better control HPAIVs.


Asunto(s)
Antígenos Virales/metabolismo , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/inmunología , Enfermedades de las Aves de Corral/virología , África , Animales , Asia , Pollos , República Democrática del Congo , Patos/clasificación , Patos/virología , Europa (Continente) , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Filogenia , Filogeografía , Enfermedades de las Aves de Corral/inmunología , Especificidad de la Especie , Replicación Viral
7.
Emerg Infect Dis ; 24(7): 1371-1374, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29912707

RESUMEN

In 2017, highly pathogenic avian influenza A(H5N8) virus was detected in poultry in the Democratic Republic of the Congo. Whole-genome phylogeny showed the virus clustered with H5N8 clade 2.3.4.4B strains from birds in central and southern Asia. Emergence of this virus in central Africa represents a threat for animal health and food security.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Pollos , República Democrática del Congo/epidemiología , Patos , Geografía , Historia del Siglo XXI , Humanos , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Humana/epidemiología , Gripe Humana/historia , Gripe Humana/virología , Uganda/epidemiología
9.
Avian Pathol ; 47(6): 559-575, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29985640

RESUMEN

In May 2016, highly pathogenic avian influenza virus of the subtype A/H5N1 was detected in Cameroon in an industrial poultry farm at Mvog-Betsi, Yaoundé (Centre region), with a recorded sudden increase of deaths among chickens, and an overall mortality rate of 75%. The virus spread further and caused new outbreaks in some parts of the country. In total, 21 outbreaks were confirmed from May 2016 to March 2017 (six in the Centre, six in the West, eight in the South and one in the Adamaoua regions). This resulted in an estimated total loss of 138,252 birds (44,451 deaths due to infection and 93,801 stamped out). Only domestic birds (chickens, ducks and geese) were affected in farms as well as in poultry markets. The outbreaks occurred in three waves, the first from May to June 2016, the second in September 2016 and the last wave in March 2017. The topology of the phylogeny based on the haemagglutinin gene segment indicated that the causative H5N1 viruses fall within the genetic clade 2.3.2.1c, within the same group as the A/H5N1 viruses collected in Niger in 2015 and 2016. More importantly, the gene constellation of four representative viruses showed evidence of H5N1/H9N2 intra-clade reassortment. Additional epidemiological and genetic data from affected countries in West Africa are needed to better trace the origin, spread and evolution of A/H5N1 in Cameroon. RESEARCH HIGHLIGHTS HPAI A/H5N1 was detected in May 2016 in domestic chickens in Yaoundé-Cameroon. Twenty-one outbreaks in total were confirmed from May 2016 to March 2017. The causative H5N1 viruses fall within the genetic clade 2.3.2.1c. The viral gene constellation showed evidence of H5N1/H9N2 intra-clade reassortment.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Virus Reordenados/genética , Animales , Camerún/epidemiología , Pollos/virología , Brotes de Enfermedades/veterinaria , Patos/virología , Gansos/virología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Filogenia , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología , Virus Reordenados/patogenicidad
12.
Emerg Infect Dis ; 23(9): 1543-1547, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28661831

RESUMEN

In winter 2016-17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events.


Asunto(s)
Variación Genética , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Aves/virología , Genotipo , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/clasificación , Italia , Filogenia , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Pavos
13.
Animals (Basel) ; 14(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612257

RESUMEN

Avian influenza viruses (AIVs), which circulate endemically in wild aquatic birds, pose a significant threat to poultry and raise concerns for their zoonotic potential. From August 2021 to April 2022, a multi-site cross-sectional study involving active AIV epidemiological monitoring was conducted in wetlands of the Emilia-Romagna region, northern Italy, adjacent to densely populated poultry areas. A total of 129 cloacal swab samples (CSs) and 407 avian faecal droppings samples (FDs) were collected, with 7 CSs (5.4%) and 4 FDs (1%) testing positive for the AIV matrix gene through rRT-PCR. A COI-barcoding protocol was applied to recognize the species of origin of AIV-positive FDs. Multiple low-pathogenic AIV subtypes were identified, and five of these were isolated, including an H5N3, an H1N1, and three H9N2 in wild ducks. Following whole-genome sequencing, phylogenetic analyses of the hereby obtained strains showed close genetic relationships with AIVs detected in countries along the Black Sea/Mediterranean migratory flyway. Notably, none of the analyzed gene segments were genetically related to HPAI H5N1 viruses of clade 2.3.4.4b isolated from Italian poultry during the concurrent 2021-2022 epidemic. Overall, the detected AIV genetic diversity emphasizes the necessity for ongoing monitoring in wild hosts using diverse sampling strategies and whole-genome sequencing.

14.
Virus Evol ; 10(1): veae027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699215

RESUMEN

Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.

15.
Pathogens ; 12(1)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678449

RESUMEN

Between October 2021 and April 2022, 317 outbreaks caused by highly pathogenic avian influenza (HPAI) H5N1 viruses were notified in poultry farms in the northeastern Italian regions. The complete genomes of 214 strains were used to estimate the genetic network based on the similarity of the viruses. An exponential random graph model (ERGM) was used to assess the effect of 'at-risk contacts', 'same owners', 'in-bound/out-bound risk windows overlap', 'genetic differences', 'geographic distances', 'same species', and 'poultry company' on the probability of observing a link within the genetic network, which can be interpreted as the potential propagation of the epidemic via lateral spread or a common source of infection. The variables 'same poultry company' (Est. = 0.548, C.I. = [0.179; 0.918]) and 'risk windows overlap' (Est. = 0.339, C.I. = [0.309; 0.368]) were associated with a higher probability of link formation, while the 'genetic differences' (Est. = -0.563, C.I. = [-0.640; -0.486]) and 'geographic distances' (Est. = -0.058, C.I. = [-0.078; -0.038]) indicated a reduced probability. The integration of epidemiological data with genomic analyses allows us to monitor the epidemic evolution and helps to explain the dynamics of lateral spreads casting light on the potential diffusion routes. The 2021-2022 epidemic stresses the need to further strengthen the biosecurity measures, and to encourage the reorganization of the poultry production sector to minimize the impact of future epidemics.

16.
Infect Genet Evol ; 111: 105423, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36889484

RESUMEN

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe during 2020-2022. Virus types H5N8 and H5N1 have dominated the epidemic. Isolated spill-over infections in mammals started to emerge as the epidemic continued. In autumn 2021, HPAI H5N1 caused a series of mass mortality events in farmed and released pheasants (Phasianus colchicus) in a restricted area in southern Finland. Later, in the same area, an otter (Lutra lutra), two red foxes (Vulpes vulpes) and a lynx (Lynx lynx) were found moribund or dead and infected with H5N1 HPAI virus. Phylogenetically, H5N1 strains from pheasants and mammals clustered together. Molecular analyses of the four mammalian virus strains revealed mutations in the PB2 gene segment (PB2-E627K and PB2-D701N) that are known to facilitate viral replication in mammals. This study revealed that avian influenza cases in mammals were spatially and temporally connected with avian mass mortalities suggesting increased infection pressure from birds to mammals.


Asunto(s)
Galliformes , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Lynx , Nutrias , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Finlandia/epidemiología , Virus de la Influenza A/genética , Zorros
17.
Microorganisms ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37317136

RESUMEN

Starting from October 2021, several outbreaks of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 were reported in wild and domestic birds in Italy. Following the detection of an HPAIV in a free-ranging poultry farm in Ostia, province of Rome, despite the lack of clinical signs, additional virological and serological analyses were conducted on samples collected from free-ranging pigs, reared in the same holding, due to their direct contact with the infected poultry. While the swine nasal swabs were all RT-PCR negative for the influenza type A matrix (M) gene, the majority (%) of the tested pigs resulted serologically positive for the hemagglutination inhibition test and microneutralization assay, using an H5N1 strain considered to be homologous to the virus detected in the farm. These results provide further evidence of the worrisome replicative fitness that HPAI H5Nx viruses of the 2.3.4.4b clade have in mammalian species. Moreover, our report calls for additional active surveillance, to promptly intercept occasional spillover transmissions to domestic mammals in close contact with HPAI affected birds. Strengthened biosecurity measures and efficient separation should be prioritized in mixed-species farms in areas at risk of HPAI introduction.

18.
Microorganisms ; 11(9)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37764070

RESUMEN

In this study, we report the first outbreak of highly pathogenic avian influenza (HPAI) A H5N8, clade 2.3.4.4b in Kosovo on 19 May 2021. The outbreak consisted of three phases: May-June 2021, September-November 2021, and January-May 2022. In total, 32 backyards and 10 commercial holdings tested positive for the virus. Interestingly, the third and last phase of the outbreak coincided with the massive H5N1 clade 2.3.4.4b epidemic in Europe. Phylogenetic analyses of 28 viral strains from Kosovo revealed that they were closely related to the H5N8 clade 2.3.4.4.b viruses that had been circulating in Albania, Bulgaria, Croatia, Hungary, and Russia in early 2021. Whole genome sequencing of the 25 and partial sequencing of three H5N8 viruses from Kosovo showed high nucleotide identity, forming a distinctive cluster and suggesting a single introduction. The results of the network analysis were in accordance with the three epidemic waves and suggested that the viral diffusion could have been caused by secondary spreads among farms and/or different introductions of the same virus from wild birds. The persistent circulation of the same virus over a one-year period highlights the potential risk of the virus becoming endemic, especially in settings with non-adequate biosecurity.

19.
Viruses ; 15(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37376688

RESUMEN

In 2021, amidst the COVID-19 pandemic and global food insecurity, the Nigerian poultry sector was exposed to the highly pathogenic avian influenza (HPAI) virus and its economic challenges. Between 2021 and 2022, HPAI caused 467 outbreaks reported in 31 of the 37 administrative regions in Nigeria. In this study, we characterized the genomes of 97 influenza A viruses of the subtypes H5N1, H5N2, and H5N8, which were identified in different agro-ecological zones and farms during the 2021-2022 epidemic. The phylogenetic analysis of the HA genes showed a widespread distribution of the H5Nx clade 2.3.4.4b and similarity with the HPAI H5Nx viruses that have been detected in Europe since late 2020. The topology of the phylogenetic trees indicated the occurrence of several independent introductions of the virus into the country, followed by a regional evolution of the virus that was most probably linked to its persistent circulation in West African territories. Additional evidence of the evolutionary potential of the HPAI viruses circulating in this region is the identification in this study of a putative H5N1/H9N2 reassortant virus in a mixed-species commercial poultry farm. Our data confirm Nigeria as a crucial hotspot for HPAI virus introduction from the Eurasian territories and reveal a dynamic pattern of avian influenza virus evolution within the Nigerian poultry population.


Asunto(s)
COVID-19 , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Enfermedades de las Aves de Corral , Animales , Humanos , Aves de Corral , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/genética , Filogenia , Nigeria/epidemiología , Pandemias , COVID-19/epidemiología , Aves , Gripe Humana/epidemiología , Enfermedades de las Aves de Corral/epidemiología
20.
J Virol ; 85(17): 8718-24, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21734057

RESUMEN

H5N1 highly pathogenic avian influenza virus has been endemic in poultry in Egypt since 2008, notwithstanding the implementation of mass vaccination and culling of infected birds. Extensive circulation of the virus has resulted in a progressive genetic evolution and an antigenic drift. In poultry, the occurrence of antigenic drift in avian influenza viruses is less well documented and the mechanisms remain to be clarified. To test the hypothesis that H5N1 antigenic drift is driven by mechanisms similar to type A influenza viruses in humans, we generated reassortant viruses, by reverse genetics, that harbored molecular changes identified in genetically divergent viruses circulating in the vaccinated population. Parental and reassortant phenotype viruses were antigenically analyzed by hemagglutination inhibition (HI) test and microneutralization (MN) assay. The results of the study indicate that the antigenic drift of H5N1 in poultry is driven by multiple mutations primarily occurring in major antigenic sites at the receptor binding subdomain, similarly to what has been described for human influenza H1 and H3 subtype viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Aviar/virología , Mutación Missense , Secuencia de Aminoácidos , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Egipto , Pruebas de Inhibición de Hemaglutinación , Humanos , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/inmunología , Modelos Moleculares , Datos de Secuencia Molecular , Pruebas de Neutralización , Aves de Corral , Virus Reordenados/genética , Virus Reordenados/inmunología , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA