Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Soc Trans ; 51(2): 487-499, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36892197

RESUMEN

Organophosphonates (Pns) are a unique class of natural products characterized by a highly stable C-P bond. Pns exhibit a wide array of interesting structures as well as useful bioactivities ranging from antibacterial to herbicidal. More structurally simple Pns are scavenged and catabolized by bacteria as a source of phosphorus. Despite their environmental and industrial importance, the pathways involved in the metabolism of Pns are far from being fully elucidated. Pathways that have been characterized often reveal unusual chemical transformations and new enzyme mechanisms. Among these, oxidative enzymes play an outstanding role during the biosynthesis and degradation of Pns. They are to a high extent responsible for the structural diversity of Pn secondary metabolites and for the break-down of both man-made and biogenic Pns. Here, we review our current understanding of the importance of oxidative enzymes for microbial Pn metabolism, discuss the underlying mechanistic principles, similarities, and differences between pathways. This review illustrates Pn biochemistry to involve a mix of classical redox biochemistry and unique oxidative reactions, including ring formations, rearrangements, and desaturations. Many of these reactions are mediated by specialized iron-dependent oxygenases and oxidases. Such enzymes are the key to both early pathway diversification and late-stage functionalization of complex Pns.


Asunto(s)
Organofosfonatos , Humanos , Organofosfonatos/química , Organofosfonatos/metabolismo , Oxidación-Reducción , Bacterias/metabolismo , Fósforo/metabolismo , Estrés Oxidativo
2.
Chembiochem ; 23(15): e202200140, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35544615

RESUMEN

Nucleocidin is an adenosine derivative containing 4'-fluoro and 5'-O-sulfamoyl substituents. In this study, nucleocidin biosynthesis is examined in two newly discovered producers, Streptomyces virens B-24331 and Streptomyces aureorectus B-24301, which produce nucleocidin and related derivatives at titers 30-fold greater than S. calvus. This enabled the identification of two new O-acetylated nucleocidin derivatives, and a potential glycosyl-O-acetyltransferase. Disruption of nucJ, nucG, and nucI, within S. virens B-24331, specifying a radical SAM/Fe-S dependent enzyme, sulfatase, and arylsulfatase, respectively, led to loss of 5'-O-sulfamoyl biosynthesis, but not fluoronucleoside production. Disruption of nucN, nucK, and nucO specifying an amidinotransferase, and two sulfotransferases respectively, led to loss of fluoronucleoside production. Identification of S. virens B-24331 as a genetically tractable and high producing strain sets the stage for understanding nucleocidin biosynthesis and highlights the utility of using 16S-RNA sequences to identify alternative producers of valuable compounds in the absence of genome sequence data.


Asunto(s)
Adenosina , Flúor , Adenosina/análogos & derivados , Sulfatasas , Ácidos Sulfónicos
3.
Chembiochem ; 23(2): e202100352, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34375042

RESUMEN

The fungal metabolite Fosfonochlorin features a chloroacetyl moiety that is unusual within known phosphonate natural product biochemistry. Putative biosynthetic genes encoding Fosfonochlorin in Fusarium and Talaromyces spp. were investigated through reactions of encoded enzymes with synthetic substrates and isotope labelling studies. We show that the early biosynthetic steps for Fosfonochlorin involve the reduction of phosphonoacetaldehyde to form 2-hydroxyethylphosphonic acid, followed by oxidative intramolecular cyclization of the resulting alcohol to form (S)-epoxyethylphosphonic acid. The latter reaction is catalyzed by FfnD, a rare example of a non-heme iron/2-(oxo)glutarate dependent oxacyclase. In contrast, FfnD behaves as a more typical oxygenase with ethylphosphonic acid, producing (S)-1-hydroxyethylphosphonic acid. FfnD thus represents a new example of a ferryl generating enzyme that can suppress the typical oxygen rebound reaction that follows abstraction of a substrate hydrogen by a ferryl oxygen, thereby directing the substrate radical towards a fate other than hydroxylation.


Asunto(s)
Compuestos Ferrosos/metabolismo , Fusarium/metabolismo , Ácidos Cetoglutáricos/metabolismo , Organofosfonatos/metabolismo , Talaromyces/metabolismo , Ciclización , Hidroxilación , Compuestos Organofosforados/metabolismo , Oxidación-Reducción
4.
Nucleic Acids Res ; 48(3): 1583-1598, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31956908

RESUMEN

Cyclic dimeric 3'-5' guanosine monophosphate, c-di-GMP, is a ubiquitous second messenger controlling diverse cellular processes in bacteria. In streptomycetes, c-di-GMP plays a crucial role in a complex morphological differentiation by modulating an activity of the pleiotropic regulator BldD. Here we report that c-di-GMP plays a key role in regulating secondary metabolite production in streptomycetes by altering the expression levels of bldD. Deletion of cdgB encoding a diguanylate cyclase in Streptomycesghanaensis reduced c-di-GMP levels and the production of the peptidoglycan glycosyltransferase inhibitor moenomycin A. In contrast to the cdgB mutant, inactivation of rmdB, encoding a phosphodiesterase for the c-di-GMP hydrolysis, positively correlated with the c-di-GMP and moenomycin A accumulation. Deletion of bldD adversely affected the synthesis of secondary metabolites in S. ghanaensis, including the production of moenomycin A. The bldD-deficient phenotype is partly mediated by an increase in expression of the pleiotropic regulatory gene wblA. Genetic and biochemical analyses demonstrate that a complex of c-di-GMP and BldD effectively represses transcription of wblA, thus preventing sporogenesis and sustaining antibiotic synthesis. These results show that manipulation of the expression of genes controlling c-di-GMP pool has the potential to improve antibiotic production as well as activate the expression of silent gene clusters.


Asunto(s)
Proteínas Bacterianas/genética , Bambermicinas/biosíntesis , Productos Biológicos/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Proteínas Bacterianas/antagonistas & inhibidores , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/genética , Nucleótidos/genética , Peptidoglicano Glicosiltransferasa/antagonistas & inhibidores , Liasas de Fósforo-Oxígeno/genética , Sistemas de Mensajero Secundario/genética , Streptomycetaceae/genética , Streptomycetaceae/metabolismo , Factores de Transcripción/antagonistas & inhibidores
5.
J Am Chem Soc ; 142(13): 5913-5917, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32182053

RESUMEN

The structural diversity of type II polyketides is largely generated by tailoring enzymes. In rishirilide biosynthesis by Streptomyces bottropensis, 13C-labeling studies previously implied extraordinary carbon backbone and side-chain rearrangements. In this work, we employ gene deletion experiments and in vitro enzyme studies to identify key biosynthetic intermediates and expose intricate redox tailoring steps for the formation of rishirilides A, B, and D and lupinacidin A. First, the flavin-dependent RslO5 reductively ring-opens the epoxide moiety of an advanced polycyclic intermediate to form an alcohol. Flavin monooxygenase RslO9 then oxidatively rearranges the carbon backbone, presumably via lactone-forming Baeyer-Villiger oxidation and subsequent intramolecular aldol condensation. While RslO9 can further convert the rearranged intermediate to rishirilide D and lupinacidin A, an additional ketoreductase RslO8 is required for formation of the main products rishirilide A and rishirilide B. This work provides insight into the structural diversification of aromatic polyketide natural products via unusual redox tailoring reactions that appear to defy biosynthetic logic.


Asunto(s)
Antracenos/metabolismo , Antraquinonas/metabolismo , Carbono/metabolismo , Streptomyces/metabolismo , Antracenos/química , Antraquinonas/química , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Carbono/química , Oxidación-Reducción , Streptomyces/química , Streptomyces/enzimología
6.
Biochemistry ; 58(52): 5271-5280, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31046250

RESUMEN

PhnZ utilizes a mixed valence diiron(II/III) cofactor and O2 to oxidatively cleave the carbon-phosphorus bond of (R)-2-amino-1-hydroxyethylphosphonic acid to form glycine and orthophosphate. The active site residues Y24 and E27 are proposed to mediate induced-fit recognition of the substrate and access of O2 to one of the active site Fe ions. H62 is proposed to deprotonate the C1-hydroxyl of the substrate during catalysis. Kinetic isotope effects (KIEs), pH-rate dependence, and site-directed mutagenesis were used to probe the rate-determining transition state and the roles of these three active site residues. Primary deuterium KIE values of 5.5 ± 0.3 for D(V) and 2.2 ± 0.4 for D(V/K) were measured with (R)-2-amino[1-2H1]-1-hydroxyethylphosphonic acid, indicating that cleavage of the C1-H bond of the substrate is rate-limiting. This step is also rate-limiting for PhnZ Y24F, as shown by a significant deuterium KIE value of 2.3 ± 0.1 for D(V). In contrast, a different reaction step appears to be rate-limiting for the PhnZ E27A and H62A variants, which exhibited D(V) values near unity. A solvent KIE of 2.2 ± 0.3 for D2O(V) is observed for PhnZ. Significant solvent KIE values are also observed for the PhnZ Y24F and E27A variants. In contrast, the PhnZ H62A variant does not show a significant solvent KIE, suggesting that H62 is mediating proton transfer in the transition state. A proton inventory study with PhnZ indicates that 1.5 ± 0.6 protons are in flight in the rate-determining step. Overall, the rate-determining transition state for oxidative C-P bond cleavage by PhnZ is proposed to involve C-H bond cleavage that is coupled to deprotonation of the substrate C1-hydroxyl by H62.


Asunto(s)
Hierro/metabolismo , Oxigenasas/metabolismo , Ácidos Fosforosos/química , Ácidos Fosforosos/metabolismo , Dominio Catalítico , Cinética , Mutación , Oxidación-Reducción , Oxigenasas/química , Oxigenasas/genética , Solventes/química
7.
Chem Rev ; 117(8): 5704-5783, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27787975

RESUMEN

Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.


Asunto(s)
Organofosfonatos/metabolismo , Lípidos/química , Polisacáridos/química
8.
Chembiochem ; 19(3): 272-279, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29148157

RESUMEN

In this study, we report that Streptomyces asterosporus DSM 41452 is a producer of new molecules related to the nonribosomal cyclodepsipeptide WS9326A and the polyketide annimycin. S. asterosporus DSM 41452 is shown to produce six cyclodepsipeptides and peptides, WS9326A to G. Notably, the compounds WS9326F and WS9326G have not been described before. The genome of S. asterosporus DSM 41452 was sequenced, and a putative WS9326A gene cluster was identified. Gene-deletion experiments confirmed that this cluster was responsible for the biosynthesis of WS9326A to G. Additionally, a gene-deletion experiment demonstrated that sas16 encoding a cytochrome P450 monooxygenase was involved in the synthesis of the novel (E)-2,3-dehydrotyrosine residue found in WS9326A and its derivatives. An insertion mutation within the putative annimycin gene cluster led to the production of a new annimycin derivative, annimycin B, which exhibited modest inhibitory activity against Plasmodium falciparum.


Asunto(s)
Amidas/farmacología , Antimaláricos/farmacología , Ácidos Grasos Insaturados/farmacología , Lactonas/farmacología , Mutación , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/farmacología , Streptomyces/genética , Streptomyces/metabolismo , Amidas/química , Antimaláricos/química , Antimaláricos/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Ácidos Grasos Insaturados/química , Lactonas/química , Conformación Molecular , Péptidos Cíclicos/química , Streptomyces/química
9.
Proc Natl Acad Sci U S A ; 111(14): 5171-6, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24706911

RESUMEN

The enzymes PhnY and PhnZ comprise an oxidative catabolic pathway that enables marine bacteria to use 2-aminoethylphosphonic acid as a source of inorganic phosphate. PhnZ is notable for catalyzing the oxidative cleavage of a carbon-phosphorus bond using Fe(II) and dioxygen, despite belonging to a large family of hydrolytic enzymes, the HD-phosphohydrolase superfamily. We have determined high-resolution structures of PhnZ bound to its substrate, (R)-2-amino-1-hydroxyethylphosphonate (2.1 Å), and a buffer additive, l-tartrate (1.7 Å). The structures reveal PhnZ to have an active site containing two Fe ions coordinated by four histidines and two aspartates that is strikingly similar to the carbon-carbon bond cleaving enzyme, myo-inositol-oxygenase. The exception is Y24, which forms a transient ligand interaction at the dioxygen binding site of Fe2. Site-directed mutagenesis and kinetic analysis with substrate analogs revealed the roles of key active site residues. A fifth histidine that is conserved in the PhnZ subclade, H62, specifically interacts with the substrate 1-hydroxyl. The structures also revealed that Y24 and E27 mediate a unique induced-fit mechanism whereby E27 specifically recognizes the 2-amino group of the bound substrate and toggles the release of Y24 from the active site, thereby creating space for molecular oxygen to bind to Fe2. Structural comparisons of PhnZ reveal an evolutionary connection between Fe(II)-dependent hydrolysis of phosphate esters and oxidative carbon-phosphorus or carbon-carbon bond cleavage, thus uniting the diverse chemistries that are found in the HD superfamily.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Organofosfonatos/metabolismo , Oxigenasas/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Especificidad por Sustrato
10.
Chembiochem ; 16(15): 2244-52, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26255983

RESUMEN

Recently we described an unusual way of activating a cryptic gene cluster when we explored the origin of the bald phenotype of Streptomyces calvus. Complementation of S. calvus with a correct copy of bldA restored sporulation and additionally promoted production of a new natural products. In this study we report on the expression of bldA in several Streptomyces strains that have been described as "poorly sporulating" strains. In seven out of 15 cases, HPLC profiling revealed the production of new compounds, and in two cases the overproduction of known compounds. Two compounds were isolated and their structures were determined.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Leucina/genética , ARN de Transferencia de Leucina/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Vías Biosintéticas/genética , Perfilación de la Expresión Génica
11.
Chembiochem ; 16(17): 2498-506, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26374477

RESUMEN

Nucleocidin is one of the very few natural products known to contain fluorine. Mysteriously, the nucleocidin producer Streptomyces calvus ATCC 13382 has not been observed to synthesize the compound since its discovery in 1956. Here, we report that complementation of S. calvus ATCC 13382 with a functional bldA-encoded Leu-tRNA(UUA) molecule restores the production of nucleocidin. Nucleocidin was detected in culture extracts by (19) F NMR spectroscopy, HPLC-ESI-MS, and HPLC-continuum source molecular absorption spectroscopy for fluorine-specific detection. The molecule was purified from a large-scale culture and definitively characterized by NMR spectroscopy and high-resolution MS. The nucleocidin biosynthetic gene cluster was identified by the presence of genes encoding the 5'-O-sulfamate moiety and confirmed by gene disruption. Two of the genes within the nucleocidin biosynthetic gene cluster contain TTA codons, thus explaining the dependence on bldA and resolving a 60-year-old mystery.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Bacterianas/metabolismo , Productos Biológicos/metabolismo , ARN de Transferencia de Leucina/metabolismo , Streptomyces/metabolismo , Adenosina/análisis , Adenosina/biosíntesis , Adenosina/química , Proteínas Bacterianas/genética , Productos Biológicos/análisis , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Flúor/química , Halogenación , Espectrometría de Masas , Familia de Multigenes , Sistemas de Lectura Abierta/genética , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo , ARN de Transferencia de Leucina/genética , Streptomyces/genética
12.
Biol Res ; 48: 58, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26466995

RESUMEN

BACKGROUND: Actinomycetes are gram positive bacteria with high G + C content in their DNA and are capable of producing variety of secondary metabolites. Many of these metabolites possess different biological activities and have the potential to be developed as therapeutic agents. The aim of the present study was to screen actinomycetes inhabiting halophilic environment such as Khewra salt mines present in Pakistan for cytotoxic and antitumor compounds. RESULTS: An actiomycetes strain designated as Streptomyces sp. KML-2 was isolated from a saline soil of Khewra salt mines, Pakistan. The strain Streptomyces sp. KML-2 showed 84 % cytotoxic activity against larvae of Artemia salina. In the screening phase, the strain exhibited significant antitumor activity with IC50 values of 12, 48 and 56 µg/ml against Hela, MDBK and Vero cell lines, respectively. After that extract from 20 l fermentation was used to purify secondary metabolites by several chromatographic techniques. Structure elucidation of isolated compounds revealed that it is highly stable producer of Chromomycin SA (1) and 1-(1H-indol-3-yl)-propane-1,2,3-triol (2). Both of the isolated compounds showed significant antitumor activity against Hela and MCF-7 cancer cell lines (IC50 values 8.9 and 7.8 µg/ml against Hela; 12.6 and 0.97 µg/ml against MCF-7, respectively). The 16S rRNA gene sequence (1437 bp) of the strain confirm its identity (99 %) with Streptomyces griseus. CONCLUSIONS: From this research work we were successful in isolating two potent antitumor compounds, Chromomycin SA and 1-(1H-indol-3-yl)-propane-1,2,3-triol from Streptomyces KML-2 strain, isolated from Khewra salt mine. As such this is the second report which confirms that S. griseus can produce Chromomycin SA without introducing any mutagenesis in its biosynthesizing gene cluster and isolated indole derivative is being reported first time from any member of actinomycetes group with having novel antitumor activity against Hela and MCF-7 cells. Nucleotide sequences: Nucleotide sequence data reported are available in the GenBank database under the accession number: GenBank KJ009562.


Asunto(s)
Antineoplásicos/farmacología , Microbiología del Suelo , Streptomyces/química , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Antineoplásicos/aislamiento & purificación , Artemia/clasificación , Artemia/efectos de los fármacos , Bovinos , Línea Celular , Chlorocebus aethiops , Cromatografía/métodos , Cromomicinas/clasificación , Cromomicinas/farmacología , Formazáns , Glicerol/análogos & derivados , Glicerol/farmacología , Células HeLa , Humanos , Concentración 50 Inhibidora , Larva/efectos de los fármacos , Células MCF-7 , Microscopía Electrónica de Rastreo , Minería , Pakistán , Filogenia , ARN Ribosómico 16S/genética , Sales (Química) , Análisis de Secuencia de ARN , Suelo/química , Streptomyces/aislamiento & purificación , Streptomyces/ultraestructura , Streptomyces griseus/clasificación , Sales de Tetrazolio , Células Vero
13.
Proc Natl Acad Sci U S A ; 108(28): 11393-8, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21705661

RESUMEN

Organophosphonate utilization by Escherichia coli requires the 14 cistrons of the phnCDEFGHIJKLMNOP operon, of which the carbon-phosphorus lyase has been postulated to consist of the seven polypeptides specified by phnG to phnM. A 5,660-bp DNA fragment encompassing phnGHIJKLM is cloned, followed by expression in E. coli and purification of Phn-polypeptides. PhnG, PhnH, PhnI, PhnJ, and PhnK copurify as a protein complex by ion-exchange, size-exclusion, and affinity chromatography. The five polypeptides also comigrate in native-PAGE. Cross-linking of the purified protein complex reveals a close proximity of PhnG, PhnI, PhnJ, and PhnK, as these subunits disappear concomitant with the formation of large cross-linked protein complexes. Two molecular forms are identified, a major form of molecular mass of approximately 260 kDa, a minor form of approximately 640 kDa. The stoichiometry of the protein complex is suggested to be PhnG(4)H(2)I(2)J(2)K. Deletion of individual phn genes reveals that a strain harboring plasmid-borne phnGHIJ produces a protein complex consisting of PhnG, PhnH, PhnI, and PhnJ, whereas a strain harboring plasmid-borne phnGIJK produces a protein complex consisting of PhnG and PhnI. We conclude that phnGHIJK specify a soluble multisubunit protein complex essential for organophosphonate utilization.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Liasas/genética , Liasas/metabolismo , Organofosfonatos/metabolismo , Secuencia de Bases , Clonación Molecular , ADN Bacteriano/genética , Genes , Genes Bacterianos , Liasas/química , Redes y Vías Metabólicas , Modelos Biológicos , Peso Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Operón , Subunidades de Proteína , Regulón , Eliminación de Secuencia
14.
J Am Chem Soc ; 134(20): 8364-7, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22564006

RESUMEN

The sequential activities of PhnY, an α-ketoglutarate/Fe(II)-dependent dioxygenase, and PhnZ, a Fe(II)-dependent enzyme of the histidine-aspartate motif hydrolase family, cleave the carbon-phosphorus bond of the organophosphonate natural product 2-aminoethylphosphonic acid. PhnY adds a hydroxyl group to the α-carbon, yielding 2-amino-1-hydroxyethylphosphonic acid, which is oxidatively converted by PhnZ to inorganic phosphate and glycine. The PhnZ reaction represents a new enzyme mechanism for metabolic cleavage of a carbon-phosphorus bond.

15.
ACS Chem Biol ; 17(12): 3507-3514, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36356213

RESUMEN

A genome mining approach was used to identify a hybrid tubercidin-nucleocidin biosynthetic gene cluster (BGC) in Streptomyces sp. AVP053U2. Analysis of culture extracts by liquid chromatography-mass spectrometry revealed the presence of a glucosylated tubercidin derivative. A gene, avpGT, was identified within the hybrid cluster that has homology to the glucosyltransferase that is responsible for 3'-O-ß-glucosylation of the fluorinated natural product nucleocidin. AvpGT was heterologously expressed and purified from Escherichia coli for in vitro characterization. AvpGT is active toward UDP-glucose and UDP-galactose as glycosyl donors and several nucleosides as acceptors. Kinetic analysis revealed that AvpGT is most specific for UDP-glucose [kcat/KMapp = (1.1 ± 0.3) × 105 M-1·s-1] as the glycosyl donor and tubercidin [kcat/KMapp = (5.3 ± 1.8) × 104 M-1·s-1] as the glycosyl acceptor. NMR spectroscopic analysis revealed the product of this reaction to be 3'-O-ß-glucopyranosyl tubercidin. A sequence analysis of AvpGT reveals a family of nucleoside-specific GTs, which may be used as markers of BGCs that produce glycosylated nucleosides.


Asunto(s)
Glicosiltransferasas , Nucleósidos , Glicosiltransferasas/metabolismo , Cinética , Tubercidina , Escherichia coli/genética , Escherichia coli/metabolismo , Uridina Difosfato Glucosa , Glucosa
16.
Biochemistry ; 50(40): 8603-15, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21830807

RESUMEN

PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-ß-lactamase superfamily, PhnP is most homologous in sequence and structure to tRNase Z phosphodiesterases. X-ray structural analysis of PhnP complexed with orthovanadate to 1.5 Å resolution revealed this inhibitor bound in a tetrahedral geometry by the two catalytic manganese ions and the putative general acid residue H200. Guided by this structure, we probed the contributions of first- and second-sphere active site residues to catalysis and metal ion binding by site-directed mutagenesis, kinetic analysis, and ICP-MS. Alteration of H200 to alanine resulted in a 6-33-fold decrease in k(cat)/K(M) with substituted methyl phenylphosphate diesters with leaving group pK(a) values ranging from 4 to 8.4. With bis(p-nitrophenyl)phosphate as a substrate, there was a 10-fold decrease in k(cat)/K(M), primarily the result of a large increase in K(M). Moreover, the nickel ion-activated H200A PhnP displayed a bell-shaped pH dependence for k(cat)/K(M) with pK(a) values (pK(a1) = 6.3; pK(a2) = 7.8) that were comparable to those of the wild-type enzyme (pK(a1) = 6.5; pK(a2) = 7.8). Such modest effects are counter to what is expected for a general acid catalyst and suggest an alternate role for H200 in this enzyme. A Brønsted analysis of the PhnP reaction with a series of substituted phenyl methyl phosphate esters yielded a linear correlation, a ß(lg) of -1.06 ± 0.1, and a Leffler α value of 0.61, consistent with a synchronous transition state for phosphoryl transfer. On the basis of these data, we propose a mechanism for PhnP.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Hidrolasas Diéster Fosfóricas/genética , Unión Proteica
17.
J Am Chem Soc ; 133(10): 3617-24, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21341651

RESUMEN

In Escherichia coli , internalization and catabolism of organophosphonicacids are governed by the 14-cistron phnCDEFGHIJKLMNOP operon. The phnP gene product was previously shown to encode a phosphodiesterase with unusual specificity toward ribonucleoside 2',3'-cyclic phosphates. Furthermore, phnP displays shared synteny with phnN across bacterial phn operons. Here the role of PhnP was examined by (31)P NMR spectrometry on the culture supernatants of E. coli phn mutants grown in the presence of alkylphosphonic acid or phosphite. The addition of any of these alkylphosphonic acids or phosphite resulted in the accumulation of α-D-ribosyl 1,2-cyclic phosphate and α-D-ribosyl 1-alkylphosphonate in a phnP mutant strain. Additionally, α-D-ribosyl 1-ethylphosphonate was observed to accumulate in a phnJ mutant strain when it was fed ethylphosphonic acid. Purified PhnP was shown to regiospecifically convert α-D-ribosyl 1,2-cyclic phosphate to α-D-ribosyl 1-phosphate. Radiolabeling studies revealed that 5-phospho-α-D-ribosyl 1,2-cyclic phosphate also accumulates in a phnP mutant. This compound was synthesized and shown to be regiospecifically converted by PhnP to α-D-ribosyl 1,5-bisphosphate. It is also shown that organophosphonate catabolism is dependent on the synthesis of 5-phospho-α-D-ribosyl 1-diphosphate, suggesting that this phosphoribosyl donor is used to initiate the carbon-phosphorus (CP) lyase pathway. The results show that 5-phospho-α-D-ribosyl 1,2-cyclic phosphate is an intermediate of organophosphonic acid catabolism, and it is proposed that this compound derives from C-P bond cleavage of 5-phospho-α-D-ribosyl 1-alkylphosphonates by CP lyase.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Liasas/metabolismo , Monosacáridos/metabolismo , Organofosfatos/metabolismo , Compuestos Organofosforados/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Liasas/genética , Monosacáridos/química , Compuestos Organofosforados/química , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética
18.
J Bacteriol ; 192(1): 370-4, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19854894

RESUMEN

The catabolism of phosphonic acids occurs in Escherichia coli by the carbon-phosphorus lyase pathway, which is governed by the 14-cistron phn operon. Here, several compounds are shown to accumulate in strains of E. coli with genetic blocks in various phn cistrons when the strains are fed with phosphonate.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Liasas/metabolismo , Operón/fisiología , Organofosfonatos/metabolismo , Cromatografía en Capa Delgada , Proteínas de Escherichia coli/genética , Liasas/genética , Mutación , Operón/genética , Radioisótopos de Fósforo/metabolismo
19.
J Biol Chem ; 284(25): 17216-17226, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19366688

RESUMEN

Carbon-phosphorus lyase is a multienzyme system encoded by the phn operon that enables bacteria to metabolize organophosphonates when the preferred nutrient, inorganic phosphate, is scarce. One of the enzymes encoded by this operon, PhnP, is predicted by sequence homology to be a metal-dependent hydrolase of the beta-lactamase superfamily. Screening with a wide array of hydrolytically sensitive substrates indicated that PhnP is an enzyme with phosphodiesterase activity, having the greatest specificity toward bis(p-nitrophenyl)phosphate and 2',3'-cyclic nucleotides. No activity was observed toward RNA. The metal ion dependence of PhnP with bis(p-nitrophenyl)phosphate as substrate revealed a distinct preference for Mn(2+) and Ni(2+) for catalysis, whereas Zn(2+) afforded poor activity. The three-dimensional structure of PhnP was solved by x-ray crystallography to 1.4 resolution. The overall fold of PhnP is very similar to that of the tRNase Z endonucleases but lacks the long exosite module used by these enzymes to bind their tRNA substrates. The active site of PhnP contains what are probably two Mn(2+) ions surrounded by an array of active site residues that are identical to those observed in the tRNase Z enzymes. A second, remote Zn(2+) binding site is also observed, composed of a set of cysteine and histidine residues that are strictly conserved in the PhnP family. This second metal ion site appears to stabilize a structural motif.


Asunto(s)
Escherichia coli/enzimología , Liasas/química , Liasas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Cartilla de ADN/genética , Estabilidad de Enzimas , Escherichia coli/genética , Cinética , Liasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Organofosfonatos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Zinc/metabolismo
20.
Biochemistry ; 48(29): 7009-18, 2009 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19441796

RESUMEN

The mechanism by which polysaccharide-hydrolyzing enzymes manifest specificity toward heterogeneous substrates, in which the sequence of sugars is variable, is unclear. An excellent example of such heterogeneity is provided by the plant structural polysaccharide glucomannan, which comprises a backbone of beta-1,4-linked glucose and mannose units. beta-Mannanases, located in glycoside hydrolase (GH) families 5 and 26, hydrolyze glucomannan by cleaving the glycosidic bond of mannosides at the -1 subsite. The mechanism by which these enzymes select for glucose or mannose at distal subsites, which is critical to defining their substrate specificity on heterogeneous polymers, is currently unclear. Here we report the biochemical properties and crystal structures of both a GH5 mannanase and a GH26 mannanase and describe the contributions to substrate specificity in these enzymes. The GH5 enzyme, BaMan5A, derived from Bacillus agaradhaerens, can accommodate glucose or mannose at both its -2 and +1 subsites, while the GH26 Bacillus subtilis mannanase, BsMan26A, displays tight specificity for mannose at its negative binding sites. The crystal structure of BaMan5A reveals that a polar residue at the -2 subsite can make productive contact with the substrate 2-OH group in either its axial (as in mannose) or its equatorial (as in glucose) configuration, while other distal subsites do not exploit the 2-OH group as a specificity determinant. Thus, BaMan5A is able to hydrolyze glucomannan in which the sequence of glucose and mannose is highly variable. The crystal structure of BsMan26A in light of previous studies on the Cellvibrio japonicus GH26 mannanases CjMan26A and CjMan26C reveals that the tighter mannose recognition at the -2 subsite is mediated by polar interactions with the axial 2-OH group of a (4)C(1) ground state mannoside. Mutagenesis studies showed that variants of CjMan26A, from which these polar residues had been removed, do not distinguish between Man and Glc at the -2 subsite, while one of these residues, Arg 361, confers the elevated activity displayed by the enzyme against mannooligosaccharides. The biological rationale for the variable recognition of Man- and Glc-configured sugars by beta-mannanases is discussed.


Asunto(s)
beta-Manosidasa/metabolismo , Bacillus/enzimología , Secuencia de Bases , Cristalografía , Cartilla de ADN , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Especificidad por Sustrato , beta-Manosidasa/química , beta-Manosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA