Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
RSC Adv ; 14(24): 16765-16777, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38799209

RESUMEN

The primary objective of this study was to examine the isolation of succinic acid (SA) from aqueous-based solutions through the utilization of adsorption and ion exchange methods. Four kinds of anion exchange resins were employed, two of which were strong basic (Lewatit M-500 and Lewatit M-600), and the other two were weak basic (Lewatit MP-64 and Lewatit MP-62). The impacts of various variables on the efficiency of the process were examined. The aqueous pH strongly influenced the separation yield. Weak basic exchangers achieved the maximum yield at pH 2.1. However, the highest performance with Lewatit M-600 and Lewatit M-500 was obtained at pH 5 and 6, respectively. The SA separation with the tested resins reached equilibrium in about an hour. The recovery data revealed consistency with the Langmuir isotherm and pseudo-second-order kinetics. Efficiency improved with resin dosage and reduced with SA concentration. It was found that weak basic anion exchange resins were more efficient than strong basic exchangers for the recovery process. Among the resins tested, Lewatit MP-62 demonstrated the highest sorption capacity of 321 mg g-1 and 97.5% yield. The performance of the system decreased with temperature for all alternatives tested; however, its impact was not notable. The isolation process had an exergonic, exothermic, and favorable character based on the thermodynamic constants. Acid-loaded resins were successfully regenerated using trimethylamine and HCl for weak and strong anion exchange resins, respectively.

2.
ACS Omega ; 8(12): 11029-11038, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008146

RESUMEN

Betaine from natural sources is still preferred over its synthetic analogue in secondary industries. It is currently obtained by expensive separation means, which is one of the main reasons for its high cost. In this study, reactive extraction of betaine from sugarbeet industry byproducts, that is, molasses and vinasse, was investigated. Dinonylnaphthalenedisulfonic acid (DNNDSA) was used as the extraction agent, and the initial concentration of betaine in the aqueous solutions of byproducts was adjusted to 0.1 M. Although maximum efficiencies were obtained at unadjusted pH values (pH 6, 5, and 6 for aqueous betaine, molasses, and vinasse solutions, respectively), the effect of aqueous pH on betaine extraction was negligible in the range of 2-12. The possible reaction mechanisms between betaine and DNNDSA under acidic, neutral, and basic conditions were discussed. Increasing the extractant concentration significantly increased (especially in the range of 0.1-0.4 M) the yields, and temperature positively (but slightly) affected betaine extraction. The highest extraction efficiencies (∼71.5, 71, and 67.5% in a single step for aqueous betaine, vinasse, and molasses solutions, respectively) were obtained with toluene as an organic phase solvent, and it was followed by dimethyl phthalate, 1-octanol, or methyl isobutyl ketone, indicating that the efficiency increased with decreasing polarity. Recoveries from pure betaine solutions were higher (especially at higher pH values and [DNNDSA] < 0.5 M) than those from vinasse and molasses solutions, indicating the adverse influence of byproduct constituents; however, the lower yields were not due to sucrose. Stripping was affected by the type of organic phase solvent, and a significant amount (66-91% in single step) of betaine in the organic phase was transferred to the second aqueous phase using NaOH as the stripping agent. Reactive extraction has a great potential for use in betaine recovery due to its high efficiency, simplicity, low energy demand, and cost.

3.
Turk J Chem ; 46(6): 2090-2101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37621351

RESUMEN

In this study, ternary mixed oxide catalysts containing Al2O3-MoO3-MgO and Al2O3-MoO3-WO3 were prepared with a changing ratio of MoO3:Al2O3 between 0.05 and 20.00. All catalysts showed 100% selectivity towards propene during the conversion of propan-2-ol at temperatures between 220 and 400 °C. The catalysts prepared from WO3 possessed very strong acid sites, which cause higher catalytic activity than catalysts prepared from MgO. Besides, the ratio of MoO3:Al2O3 was found to be directly proportional to the conversion yield for all catalysts. XRD results show that whole MgO reacted with Al2O3 and MoO3 to form amorphous MgMoO4 and MgAl2O4 phases during catalyst preparation. Furthermore, WO3 reacted only with Al2O3 to form Al2(WO4)3 and WO3 phase was also detected in the final product. The higher surface acidity and catalytic activity of Al2O3-MoO3-WO3 catalyst referred to this WO3 phase within the structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA