Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 16(7): e2005840, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30011268

RESUMEN

Clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR-associated 9 (Cas9) genome editing is revolutionizing fundamental research and has great potential for the treatment of many diseases. While editing of immortalized cell lines has become relatively easy, editing of therapeutically relevant primary cells and tissues can remain challenging. One recent advancement is the delivery of a Cas9 protein and an in vitro-transcribed (IVT) guide RNA (gRNA) as a precomplexed ribonucleoprotein (RNP). This approach allows editing of primary cells such as T cells and hematopoietic stem cells, but the consequences beyond genome editing of introducing foreign Cas9 RNPs into mammalian cells are not fully understood. Here, we show that the IVT gRNAs commonly used by many laboratories for RNP editing trigger a potent innate immune response that is similar to canonical immune-stimulating ligands. IVT gRNAs are recognized in the cytosol through the retinoic acid-inducible gene I (RIG-I) pathway but not the melanoma differentiation-associated gene 5 (MDA5) pathway, thereby triggering a type I interferon response. Removal of the 5'-triphosphate from gRNAs ameliorates inflammatory signaling and prevents the loss of viability associated with genome editing in hematopoietic stem cells. The potential for Cas9 RNP editing to induce a potent antiviral response indicates that care must be taken when designing therapeutic strategies to edit primary cells.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata/genética , ARN Guía de Kinetoplastida/genética , Transcripción Genética , Línea Celular , Citosol/metabolismo , Humanos , Interferón Tipo I/metabolismo , Modelos Biológicos , ARN Guía de Kinetoplastida/metabolismo , Receptores Inmunológicos
2.
Proc Natl Acad Sci U S A ; 115(6): 1316-1321, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29367421

RESUMEN

Missense mutations that disrupt the RING domain of the tumor suppressor gene BRCA1 lead to increased risk of breast and ovarian cancer. The BRCA1 RING domain is a ubiquitin ligase, whose structure and function rely critically on forming a heterodimer with BARD1, which also harbors a RING domain. The function of the BARD1 RING domain is unknown. In families severely affected with breast cancer, we identified inherited BARD1 missense mutations Cys53Trp, Cys71Tyr, and Cys83Arg that alter three zinc-binding residues of the BARD1 RING domain. Each of these mutant BARD1 proteins retained the ability to form heterodimeric complexes with BRCA1 to make an active ubiquitin ligase, but the mutant BRCA1/BARD1 complexes were deficient in binding to nucleosomes and in ubiquitylating histone H2A. The BARD1 mutations also caused loss of transcriptional repression of BRCA1-regulated estrogen metabolism genes CYP1A1 and CYP3A4; breast epithelial cells edited to create heterozygous loss of BARD1 showed significantly higher expression of CYP1A1 and CYP3A4 Reintroduction of wild-type BARD1 into these cells restored CYP1A1 and CYP3A4 transcription to normal levels, but introduction of the cancer-predisposing BARD1 RING mutants failed to do so. These results indicate that an intact BARD1 RING domain is critical to BRCA1/BARD1 binding to nucleosomes and hence to ubiquitylation of histone H2A and also critical to transcriptional repression of BRCA1-regulated genes active in estrogen metabolism.


Asunto(s)
Estrógenos/metabolismo , Histonas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Estrógenos/genética , Femenino , Regulación de la Expresión Génica , Histonas/genética , Humanos , Masculino , Mutación Missense , Nucleosomas/metabolismo , Dominios Proteicos , Proteínas Supresoras de Tumor/química , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
3.
Mol Cell ; 48(3): 459-70, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23022381

RESUMEN

Cellular processes function through multistep pathways that are reliant on the controlled association and disassociation of sequential protein complexes. While dynamic action is critical to propagate and terminate work, the mechanisms used to disassemble biological structures are not fully understood. Here we show that the p23 molecular chaperone initiates disassembly of protein-DNA complexes and that the GCN5 acetyltransferase prolongs the dissociated state through lysine acetylation. By modulating the DNA-bound state, we found that the conserved and essential joint activities of p23 and GCN5 impacted transcription factor activation potential and response time to an environmental cue. Notably, p23 and GCN5 were required to maintain open chromatin regions along the genome, indicating that dynamic protein behavior is a critical feature of various DNA-associated events. Our data support a model in which p23 and GCN5 regulate diverse multistep pathways by controlling the longevity of protein-DNA complexes.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Histona Acetiltransferasas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Animales , Células Cultivadas , Cromatina/genética , ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Células HeLa , Factores de Transcripción del Choque Térmico , Histona Acetiltransferasas/genética , Humanos , Immunoblotting , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Ratones , Ratones Noqueados , Modelos Genéticos , Chaperonas Moleculares/genética , Mutación , Prostaglandina-E Sintasas , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
4.
Mol Cell ; 43(2): 229-41, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21777812

RESUMEN

In parallel with evolutionary developments, the Hsp90 molecular chaperone system shifted from a simple prokaryotic factor into an expansive network that includes a variety of cochaperones. We have taken high-throughput genomic and proteomic approaches to better understand the abundant yeast p23 cochaperone Sba1. Our work revealed an unexpected p23 network that displayed considerable independence from known Hsp90 clients. Additionally, our data uncovered a broad nuclear role for p23, contrasting with the historical dogma of restricted cytosolic activities for molecular chaperones. Validation studies demonstrated that yeast p23 was required for proper Golgi function and ribosome biogenesis, and was necessary for efficient DNA repair from a wide range of mutagens. Notably, mammalian p23 had conserved roles in these pathways as well as being necessary for proper cell mobility. Taken together, our work demonstrates that the p23 chaperone serves a broad physiological network and functions both in conjunction with and sovereign to Hsp90.


Asunto(s)
Núcleo Celular/metabolismo , Chaperonas Moleculares/genética , Secuencia de Aminoácidos , Citosol/metabolismo , Reparación del ADN/fisiología , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
FEBS J ; 289(11): 3101-3114, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34914197

RESUMEN

DNA damage activates a robust transcriptional stress response, but much less is known about how DNA damage impacts translation. The advent of genome editing with Cas9 has intensified interest in understanding cellular responses to DNA damage. Here, we find that DNA double-strand breaks (DSBs), including those induced by Cas9, trigger the loss of ribosomal protein RPS27A from ribosomes via p53-independent proteasomal degradation. Comparisons of Cas9 and dCas9 ribosome profiling and mRNA-seq experiments reveal a global translational response to DSBs that precedes changes in transcript abundance. Our results demonstrate that even a single DSB can lead to altered translational output and ribosome remodeling, suggesting caution in interpreting cellular phenotypes measured immediately after genome editing.


Asunto(s)
Roturas del ADN de Doble Cadena , Edición Génica , Sistemas CRISPR-Cas , Daño del ADN/genética , Reparación del ADN , Edición Génica/métodos , Proteínas Ribosómicas/genética
6.
Chem Commun (Camb) ; (7): 767-9, 2009 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-19322435

RESUMEN

Double-stranded DNA constraints enable efficient control of catalysis by a large multi-domain group I intron ribozyme.


Asunto(s)
Biocatálisis/efectos de los fármacos , ADN/farmacología , ARN Catalítico/metabolismo , Tetrahymena/enzimología , Animales , Modelos Moleculares , Estructura Terciaria de Proteína , ARN Catalítico/química
7.
Nat Genet ; 50(8): 1132-1139, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30054595

RESUMEN

CRISPR-Cas genome editing creates targeted DNA double-strand breaks (DSBs) that are processed by cellular repair pathways, including the incorporation of exogenous DNA via single-strand template repair (SSTR). To determine the genetic basis of SSTR in human cells, we developed a coupled inhibition-cutting system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. We found that human Cas9-induced SSTR requires the Fanconi anemia (FA) pathway, which is normally implicated in interstrand cross-link repair. The FA pathway does not directly impact error-prone, non-homologous end joining, but instead diverts repair toward SSTR. Furthermore, FANCD2 protein localizes to Cas9-induced DSBs, indicating a direct role in regulating genome editing. Since FA is itself a genetic disease, these data imply that patient genotype and/or transcriptome may impact the effectiveness of gene editing treatments and that treatments biased toward FA repair pathways could have therapeutic value.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Anemia de Fanconi/genética , Transducción de Señal/genética , Línea Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Edición Génica/métodos , Genotipo , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Células K562 , Células MCF-7
8.
Mol Cell Biol ; 22(7): 2283-93, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11884613

RESUMEN

Hypoxia is an important factor that elicits numerous physiological and pathological responses. One of the major gene expression programs triggered by hypoxia is mediated through hypoxia-responsive transcription factor hypoxia-inducible factor 1 (HIF-1). Here, we report the identification and cloning of a novel HIF-1-responsive gene, designated RTP801. Its strong up-regulation by hypoxia was detected both in vitro and in vivo in an animal model of ischemic stroke. When induced from a tetracycline-repressible promoter, RTP801 protected MCF7 and PC12 cells from hypoxia in glucose-free medium and from H(2)O(2)-triggered apoptosis via a dramatic reduction in the generation of reactive oxygen species. However, expression of RTP801 appeared toxic for nondividing neuron-like PC12 cells and increased their sensitivity to ischemic injury and oxidative stress. Liposomal delivery of RTP801 cDNA to mouse lungs also resulted in massive cell death. Thus, the biological effect of RTP801 overexpression depends on the cell context and may be either protecting or detrimental for cells under conditions of oxidative or ischemic stresses. Altogether, the data suggest a complex type of involvement of RTP801 in the pathogenesis of ischemic diseases.


Asunto(s)
Apoptosis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Diferenciación Celular , Clonación Molecular , Proteínas de Unión al ADN/química , Humanos , Peróxido de Hidrógeno/farmacología , Hipoxia/genética , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Hibridación in Situ , Liposomas/metabolismo , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Datos de Secuencia Molecular , Células PC12 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Represoras , Homología de Secuencia de Aminoácido , Accidente Cerebrovascular/genética , Factores de Transcripción/química , Células Tumorales Cultivadas , Regulación hacia Arriba
9.
Oncogene ; 21(39): 6017-31, 2002 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-12203114

RESUMEN

cDNA microarray hybridization was used in an attempt to identify novel genes participating in cellular responses to prolonged hypoxia. One of the identified novel genes, designated Hi95 shared significant homology to a p53-regulated GADD family member PA26. In addition to its induction in response to prolonged hypoxia, the increased Hi95 transcription was observed following DNA damage or oxidative stress, but not following hyperthermia or serum starvation. Whereas induction of Hi95 by prolonged hypoxia or by oxidative stress is most likely p53-independent, its induction in response to DNA damaging treatments (gamma- or UV-irradiation, or doxorubicin) occurs in a p53-dependent manner. Overexpression of Hi95 full-length cDNA was found toxic for many types of cultured cells directly leading either to their apoptotic death or to sensitization to serum starvation and DNA damaging treatments. Unexpectedly, conditional overexpression of the Hi95 cDNA in MCF7-tet-off cells resulted in their protection against cell death induced by hypoxia/glucose deprivation or H(2)O(2). Thus, Hi95 gene seems to be involved in complex regulation of cell viability in response to different stress conditions.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Antineoplásicos/farmacología , Secuencia de Bases , Northern Blotting , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , División Celular , Supervivencia Celular , Clonación Molecular , Cartilla de ADN/química , Doxorrubicina/farmacología , Glioma/metabolismo , Glioma/patología , Humanos , Peróxido de Hidrógeno/farmacología , Hipoxia/metabolismo , Etiquetado Corte-Fin in Situ , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
J Mol Biol ; 427(7): 1644-54, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25688804

RESUMEN

Heat shock factor 1 (HSF1) is critical for defending cells from both acute and chronic stresses. In aging cells, the DNA binding activity of HSF1 deteriorates correlating with the onset of pathological events including neurodegeneration and heart disease. We find that DNA binding by HSF1 is controlled by lysine deacetylases with HDAC7, HDAC9, and SIRT1 distinctly increasing the magnitude and length of a heat shock response (HSR). In contrast, HDAC1 inhibits HSF1 in a deacetylase-independent manner. In aging cells, the levels of HDAC1 are elevated and the HSR is impaired, yet reduction of HDAC1 in aged cells restores the HSR. Our results provide a mechanistic basis for the age-associated regulation of the HSR. Besides HSF1, the deacetylases differentially modulate the activities of unrelated DNA binding proteins. Taken together, our data further support the model that lysine deacetylases are selective regulators of DNA binding proteins.


Asunto(s)
Senescencia Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Respuesta al Choque Térmico , Histona Desacetilasa 1/fisiología , Factores de Transcripción/metabolismo , Acetilación , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Factores de Transcripción del Choque Térmico , Respuesta al Choque Térmico/genética , Humanos , Lisina/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/fisiología
11.
Biochemistry ; 45(9): 2767-71, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16503631

RESUMEN

We previously used in vitro selection to identify the 7S11 deoxyribozyme, which catalyzes formation of 2',5'-branched RNA using a branch-site adenosine nucleophile and a 5'-triphosphate electrophile. An unanswered question is whether the use of branch-site adenosine is inherently preferred or a chance event during the particular selection experiment. Here we have found that deoxyribozymes newly selected to use uridine as the branch-site RNA nucleotide in a structural context that resembles natural RNA splicing instead prefer a branch-site adenosine, although adenosine was never available during the selection itself. Our results support a chemical basis for nature's choice of the branch-site nucleotide, which is almost always adenosine in group II introns and the spliceosome.


Asunto(s)
Adenosina/química , Nucleótidos/química , Empalme del ARN , ARN/química , Adenosina/metabolismo , Secuencia de Bases , ADN Catalítico/química , ADN Catalítico/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Purinas/química , Purinas/metabolismo , Relación Estructura-Actividad , Uridina/química , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA